Acta Scientiarum Naturalium Universitatis Pekinensis
Next Articles
KUANG Nenghui, CHEN Yong
Received:
Online:
Published:
匡能晖,陈勇
Abstract: Let {Xk, 1 ≤k ≤n} be independent and identically distributed random variables, and X1:n, X2:n, … , Xn:n their order statistics. When Xk follows doubly truncated Cauchy distribution with parameters A, B(A1:n and Xn:n are obtained. For a fixed integer k> 1, the asymptotic distributions of Xn:n and Xn-k+1:n are also obtained. What’s more, it proves that X1:n and Xn:n are asymptotically independent.
Key words: doubly truncated Cauchy distribution, order statistic, asymptotic distribution, asymptotically independent
摘要: 设 {Xk, 1 ≤k ≤n}独立同分布, X1:n, X2:n, … , Xn:n为其顺序统计量。当 Xk服从参数为 A 和 B(A1:n和Xn:n的渐近分布; 当 k(k>1)固定时,得到Xn:n和Xn-k+1:n的渐近分布; 并且证明其极端顺序统计量X1:n和Xn:n是渐近独立的。
关键词: 双截尾的Cauchy分布, 顺序统计量, 渐近分布, 渐近独立
CLC Number:
O211
KUANG Nenghui,CHEN Yong. Asymptotic Distributions of Order Statistics from Doubly Truncated Cauchy Distribution[J]. Acta Scientiarum Naturalium Universitatis Pekinensis.
匡能晖,陈勇. 双截尾的Cauchy 分布顺序统计量的渐近分布[J]. 北京大学学报(自然科学版).
Add to citation manager EndNote|Ris|BibTeX
URL: https://xbna.pku.edu.cn/EN/
https://xbna.pku.edu.cn/EN/Y2011/V47/I3/385