Acta Scientiarum Naturalium Universitatis Pekinensis

Previous Articles     Next Articles

Gradient Expansion of the Kinetic Energy Density of the Two Dimensional Inhomogeneous Electron Systems

YAN Wei   

  1. School of Physics, Peking University, Beijing 100871; E-mail:yanweiboyata@163.com?
  • Received:2007-09-28 Online:2008-11-20 Published:2008-11-20

二维非均匀电子体系的动能的梯度展开

闫伟   

  1. 北京大学物理学院,凝聚态与材料物理研究所,北京100871;E-mail:yanweiboyata@163.com

Abstract: Kirzhnits method is extended in the gradient expansion of the Dirac density matrix of a many electron system to the two dimension case. The zeroth-order and second-order expansion for the Dirac density matrix in two dimensions is derived. From it, the expansion for the density and kinetic energy are further derived. The results show that, in contrast to the case of the three dimensions, to the second order of the gradient expansion, there is only the Laplacian type of term Δ2kF2, while the gradient term of (ΔkF2)2 is absent in the two dimensional case. The result should be useful in the application of density functional theory to two dimensional systems.

Key words: Thomas-Fermi theory, Hohenberg-Kohn theory, Kohn-Sham method, kinetic energy density

摘要: 把传统的Kirzhnits方法扩展到了二维,获得了Dirac密度矩阵的零阶和二阶展开的表达式,进而得到密度和动能的直到二阶的梯度展开表达式。发现和三维情况不同的是,直到二阶的梯度展开的表达式,二维情况只有拉普拉斯类型的项Δ2kF2,而梯度平方形式的项(ΔkF2)2是不存在的。

关键词: Thomas-Fermi理论, Hohenberg-Kohn理论, Kohn-Sham方法, 动能密度

CLC Number: