Acta Scientiarum Naturalium Universitatis Pekinensis
Next Articles
WANG Fang,CHENG Shihong
Received:
Online:
Published:
王芳,程士宏
Abstract: Let{Xn, n≥1} be a sequence of i.i.d. random variables with common d.f.F(x). X1, n≤…≤Xn, n}are its order statistics. Qis the quantile function of F. It is shown that for any underlying distribution function F, the LIL for the heavily trimmed sums remains true, as long as λ and 1-λare continuity points of Q and σ(λ)>0. Moreover, a strong approximation result is obtained in this case.
Key words: heavily trimmed sums, LIL, strong approximation
摘要: 令{Xn, n≥1}是一列独立同分布的随机变量,其共同分布为F(x). X1, n≤…≤Xn, n}是其次序统计量。Q 是F的分位函数。对任何分布函数F,只要λ和1-λ是Q 的连续点且σ(λ)>0,重截和的重对数律成立。而且在这种情形下获得了强逼近结果。
关键词: 重截和, 重对数律, 强逼近
CLC Number:
O211.4
WANG Fang,CHENG Shihong. A Law of the Iterated Logarithm for the Heavily Trimmed Sums[J]. Acta Scientiarum Naturalium Universitatis Pekinensis.
王芳,程士宏. 重截和的重对数律[J]. 北京大学学报(自然科学版).
Add to citation manager EndNote|Ris|BibTeX
URL: https://xbna.pku.edu.cn/EN/
https://xbna.pku.edu.cn/EN/Y2001/V37/I3/289