Acta Scientiarum Naturalium Universitatis Pekinensis
Next Articles
FANG Xiangzhong
Received:
Online:
Published:
房祥忠
Abstract: This paper study the law of iterated logarithms of maximum likelihood estimate for general non-homogeneous Poisson processes. Suppose{N(t), t≥0} is a Poisson process on probability space{Ω, F, Pθ}, where θ=(θ1,...,θm) is unknown parameter. Let θ﹡=(θ1﹡,...,θm﹡) be the true value of θ, θ^(T)=(θ1^(T),...,θm^(T)) be the MLE of θ and (aij)i,j=1,...,m the inverse martrix of the information matrix, then under some conditions, for any i(1≤i≤m), the following equation hold
Key words: Poisson processes, strong consistency, law of iterated logarithm
摘要: 对于具有向量参数的非齐次泊松过程的一般模型,论证了向量参数极大似然估计每个分量的收敛速度符合重对数律。
关键词: 泊松点过程, 强相合性, 重对数律
CLC Number:
O211.64
O212.1
FANG Xiangzhong. Law of Iterated Logarithms of MLE for Non-homogeneous Poisson Processes[J]. Acta Scientiarum Naturalium Universitatis Pekinensis.
房祥忠. 非齐次泊松过程中向量参数极大似然估计的重对数律[J]. 北京大学学报(自然科学版).
Add to citation manager EndNote|Ris|BibTeX
URL: https://xbna.pku.edu.cn/EN/
https://xbna.pku.edu.cn/EN/Y1998/V34/I5/563