Acta Scientiarum Naturalium Universitatis Pekinensis
Previous Articles Next Articles
WANG Qingxian1, WANG Gongben2, YAN Shuda3
Received:
Online:
Published:
王清贤1, 王攻本2, 阎淑达3
Abstract: The Ramsey number n=R(G,H) has been defined as the minimum n such that every 2-coloring (red and green) of the edges of the complete graph Kn has a red subgraph G, or a green subgraph H.By constructing cyclic colorings systematically with the help of a microcomputer, it is proved that R(K3,K11-e)>=42, R(K3,K13-e)>=54, R(K3,K14-e)>=59, R(K3,K15-e)>=69.
Key words: Ramsey number, lower bound, cyclic coloring
摘要: 利用一种系统地构造循环着色的算法,借助计算机证明了Ramsey数R(K3,Kq-e) 的下述新下界: R(K3,K11-e)≥42, R(K3,K13-e)≥54, R(K3,K14-e)≥59, R(K3,K15-e)≥69。
关键词: Ramsey数, 下界, 循环着色
CLC Number:
O157.5
WANG Qingxian,WANG Gongben,YAN Shuda. The Ramsey Numbers R(K3, Kq-e)[J]. Acta Scientiarum Naturalium Universitatis Pekinensis.
王清贤, 王攻本, 阎淑达. Ramsey数R(K3, Kq-e)[J]. 北京大学学报(自然科学版).
Add to citation manager EndNote|Ris|BibTeX
URL: https://xbna.pku.edu.cn/EN/
https://xbna.pku.edu.cn/EN/Y1998/V34/I1/15