Acta Scientiarum Naturalium Universitatis Pekinensis
Previous Articles Next Articles
YANG Ying
Received:
Online:
Published:
杨瑛
Abstract: Consider the linear regression model Yni=xniβ+cni,i=1,…,n, where β is the unknown parameter to be estimated, xni's are known constants. Assume that, for each n,{en1,…,enn}have the same joint distribution as{ξ1,…,ξn}, where {ξi,t=…,-1,0,1,…}is strictly stationary and φ-mixing times series defined on a probability space(Ω, B,P) and taking values on R . This paper investigates the asymptotic properties of a class of minimum distance Cramser-Von Mises type estimators of the slope parameterin a linear regression model. These estimators are defined in terms of minimizing an integral of squared difference between weighted empiricals of the residuals and their expectations with respect to a large class of integrating measures. The estimator βd of β is shown to be asymptotically normal.
Key words: minimum distance estimation, φ-mixing, asymptotic normality
摘要: 考虑线性回归模型 Yni=xniβ+ eni,i=1,…,n,其中β是待估计的未知参数,xni是已知的常数。假定对每个 n, en1,…,enn 与ξ1,…,ξn同分布,其中{ξt, t=…,-1,0,1,…}是定义于概率空间(Ω,B,P)上取值于R的严平稳φ-混合序列。研究了一类由Cramer-von Mises型距离所定义的参数β的最小距离估计的渐进性质。证明了β的估计βd是渐进正态的。
关键词: 最小距离估计, φ-混合, 渐近正态性
CLC Number:
O212
YANG Ying. Minimum Distance Estimation in aLinear Regression Model:the φ-mixing Case[J]. Acta Scientiarum Naturalium Universitatis Pekinensis.
杨瑛 . 线性回归模型中的最小距离估计:φ-混合情形[J]. 北京大学学报(自然科学版).
Add to citation manager EndNote|Ris|BibTeX
URL: https://xbna.pku.edu.cn/EN/
https://xbna.pku.edu.cn/EN/Y1996/V32/I5/562