Acta Scientiarum Naturalium Universitatis Pekinensis
Previous Articles Next Articles
CHEN Yonggao
Received:
Online:
Published:
陈永高
Abstract: Let G be a multiplicative group, B be a subset of G and h>=2 be an integer. Denote by Bh the set of all products of h elements of B . The set B is a basis of order h for G if Bh=G . In this paper the following result is proved: if G is a finite group of order n, then there exists a subset B of Gsuch that Bh=G and |B|<= h(1- 1/ h )1/h(n ·log n)1/h+o(n1/h) , where|B|is the cardinality of the subset B .
Key words: basis, finite group, cardinality
摘要: 设G为乘法群,B为G的子集,h为不小于2的整数,Bh为B中h各元素之积所成的集合。若Bh=G,则称B为G的阶为h的基。本文证明了如下结论:若G为n阶群,则存在G的子集B,使得Bh=G,|B|≤h(1-(1/h))1/h(nlogn)1/h+o(n)1/h),其中|B|为子集B的基数。
关键词: 基, 有限群, 基数
CLC Number:
O144
O152.1
CHEN Yonggao. On Bases of Finite Groups[J]. Acta Scientiarum Naturalium Universitatis Pekinensis.
陈永高 . 关于有限群的基[J]. 北京大学学报(自然科学版).
Add to citation manager EndNote|Ris|BibTeX
URL: https://xbna.pku.edu.cn/EN/
https://xbna.pku.edu.cn/EN/Y1996/V32/I5/553