Acta Scientiarum Naturalium Universitatis Pekinensis

Previous Articles     Next Articles

Asymptotic Properties of Weight-α Bers' Space QAα(Ω) on Hyperbolic Regions

WANG Wei   

  1. Department of Mathematics, Peking University, Beijing, 100871
  • Received:1994-09-30 Online:1995-05-20 Published:1995-05-20

双曲型区域上带权Bers空间QAα(Ω)的渐近性质

王卫   

  1. 北京大学数学系,北京,100871

Abstract: Let ΩΩ(z)|dz|be the hyperbolic metric on Ω. δΩ(z)=dist(z,Ω);[δΩ(z)]α|dz| is called α-quasihyperbolic metric on Ω. This paper discusses the asymptotic properties of QAα(Ω), QBα(Ω)and QTα(Ω)under the α-quasihyperbolic metric, and their relations with similar function spaces under the hyperbolic metric.

Key words: hyperbolic region, hyperbolic metric, α-quasihyperbolic metric, QAα(Ω)-function, QBα(Ω)-function, QTα(Ω)-function, uniformly perfect domain, Bloch region

摘要: 设Ω<C是双曲型区域,λΩ(z)|dz|是Ω上的双曲度量。δΩ(z)=dist(z,Ω),称[δΩ(z)]α·|dz|为Ω上的α-拟双曲度量。这篇文章主要讨论在α-拟双曲度量下定义的函数空间QAα(Ω)QBα(Ω)QTα(Ω)的渐近性质以及与双曲度量意义下类似的函数空间的关系。

关键词: 双曲型区域, 双曲度量, α-小拟双曲度量, QAα(Ω, -函数, QBα(Ω, -函数, QTα(Ω, -函数

CLC Number: