Acta Scientiarum Naturalium Universitatis Pekinensis
Next Articles
CHENG Shihong, PENG Liang
Received:
Online:
Published:
程士宏,彭亮
Abstract: Let {Xn, n≥1}be a sequence of i.i.d.random variables with acommon nondegenerate d.f., for each n≥1, denote Xn, 1≤...≤Xn, n as the order statistics of X1,…,Xn and for integers 1≤ln≤rn≤n and nonnegative real numbers pn and qn, define Sn(ln, rn)=∑rn-1i=l n+1Xn, i +pnXn, ln+qnXn, rn. Assume that { ln, n≥1} satisfies either ln=l for all n≥1 (l is a fixed positive integer), or ln→∞ and ln/(n+1)→0 and that {rn, n≥1} satisfies n-rn+1→∞ and rn/(n+1>→λ∈(0, 1]. We will discuss asymptotic distributions of normalized sums {(Sn(ln, rn)-β n)/α n, n≥1}. Results on trimmed sums and winsorized sums will be obtained as special cases of the above sums. Especially, we will improve a Griffin's result on asymptotic normality of winsorized sums and give a positive reply for one of his conjectures.
Key words: Trimmed sums, winsorized sums, stochastic compactness, asymptotic normality
摘要: 设{Xn, n≥1}是独立同分布随机变量列,Xn, 1≤...≤Xn, n是X1,…,Xn的次序统计量。对非负实数pn,qn和满足1≤ln≤rn≤n的整数ln, rn,令Sn(ln, rn)=∑rn-1i=l n+1 Xn, i +pnXn, ln+qnXn, rn。当{ln), n≥1}满足ln≡l(l是一给定的正整数)或ln→∞但ln/(n+1)→0,同时{rn), n≥1},满足n-rn+1→∞但rn/(n+1)→λ∈(0, 1]时,我们讨论了标准化后之和{(Sn(ln, rn)-βn)/αn, n≥1}的渐近分布问题。关于截断和及修正截断和的结果将作为特例给出。特别地,我们改进了格里芬关于修正截断和渐近正态性的结论;对于他的一个猜测也作出了正面的回答。
关键词: 截断和, 修正截断和, 随机紧性, 渐近正态性
CLC Number:
O1211.4
CHENG Shihong,PENG Liang. The Asymptotic Distributions for Sums of Order Statistics (II)[J]. Acta Scientiarum Naturalium Universitatis Pekinensis.
程士宏,彭亮. 次序统计量和的渐近分布(Ⅱ)[J]. 北京大学学报(自然科学版).
Add to citation manager EndNote|Ris|BibTeX
URL: https://xbna.pku.edu.cn/EN/
https://xbna.pku.edu.cn/EN/Y1995/V31/I3/255