[1] 谢高地, 张钇锂, 鲁春霞, 等. 中国自然草地生态系统服务价值. 自然资源学报, 2001(1): 47–53
[2] Lee M, Manning P, Rist J, et al. A global comparison of grassland biomass responses to CO2 and nitrogen enrichment. Philosophical Transactions of the Royal Society B: Biological Sciences. 2010, 365: 2047– 2056
[3] 王玉辉, 周广胜. 内蒙古羊草草原植物群落地上初级生产力时间动态对降水变化的响应. 生态学报, 2004, 24(6): 1140–1145
[4] 白永飞, 许志信, 李德新. 羊草草原群落生物量季节动态研究. 中国草地, 1994, 16(3): 1–5
[5] 杨汝荣. 我国西部草地退化原因及可持续发展分析. 草业科学, 2002, 19(1): 23–27
[6] 王庆锁, 李梦先, 李春和. 我国草地退化及治理对策. 中国农业气象, 2004, 25(3): 41–44 贺星等 养分添加对内蒙古不同草地生态系统生物量的影响 665
[7] 李博. 中国北方草地退化及其防治对策. 中国农业科学, 1997, 30(6): 2–10
[8] 刘钟龄, 王炜, 郝敦元, 等. 内蒙古草原退化与恢复演替机理的探讨. 干旱区资源与环境, 2002, 16(1): 84–91
[9] 闫玉春, 唐海萍, 张新时. 草地退化程度诊断系列问题探讨及研究展望. 中国草地学报, 2007, 29(3): 90–97
[10] 吴德东, 刘淑玲, 李玉航, 等. 围封对沙地草地的影响. 中国草地, 1997, 19(6): 37–41
[11] 张铜会, 赵哈林, 李玉霖, 等. 科尔沁沙地灌溉与施肥对退化草地生产力的影响. 草业学报, 2008, 17(1): 36–42
[12] 张英俊, 杨高文, 刘楠, 等. 草原碳汇管理对策. 草业学报, 2013, 22(2): 290–299
[13] Conant R T, Paustian K, Elliott E T. Grassland management and conversion into grassland: effects on soil carbon. Ecological Applications. 2001, 11(2): 343–355
[14] Wang S, Wilkes A, Zhang Z, et al. Management and land use change effects on soil carbon in northern China's grasslands: a synthesis. Agriculture, Ecosystems & Environment, 2011, 142(3): 329–340
[15] 潘庆民, 白永飞, 韩兴国, 等. 氮素对内蒙古典型草原羊草种群的影响. 植物生态学报, 2005, 29(2): 311–317
[16] 李禄军, 曾德慧, 于占源, 等. 氮素添加对科尔沁沙质草地物种多样性和生产力的影响. 应用生态学报, 2009, 20(8): 1838–1844
[17] 邱波, 罗燕江. 不同施肥梯度对甘南退化高寒草甸生产力和物种多样性的影响. 兰州大学学报, 2004, 40(3): 56–59
[18] 郭永盛, 李鲁华, 危常州, 等. 施氮肥对新疆荒漠草原生物量和土壤酶活性的影响. 农业工程学报, 2011, 27(S1): 249–256
[19] 白春利, 阿拉塔, 陈海军, 等. 氮素和水分添加对短花针茅荒漠草原植物群落特征的影响. 中国草地学报, 2013, 35(2): 69–75
[20] LeBauer D S, Treseder K K. Nitrogen limitation of net primary productivity in terrestrial ecosystems is globally distributed. Ecology, 2008, 89(2): 371–379
[21] Vitousek P M, Howarth R W. Nitrogen limitation on land and in the sea: how can it occur?. Biogeochemistry, 1991, 13(2): 87–115
[22] 何丹, 李向林, 何峰, 等. 施氮对退化天然草地主要物种地上生物量和重要值的影响. 中国草地学报, 2009, 31(5): 42–46
[23] Li J, Lin S, Taube F, et al. Above and belowground net primary productivity of grassland influenced by supplemental water and nitrogen in Inner Mongolia. Plant and Soil, 2011, 340: 253–264
[24] Coupland R T. Grassland ecosystems of the world: analysis of grasslands and their uses. London: Cambridge University Press, 1979
[25] 郑晓翾, 赵家明, 张玉刚, 等. 呼伦贝尔草原生物量变化及其与环境因子的关系. 生态学杂志, 2007, 26(4): 533–538
[26] 白永飞. 降水量季节分配对克氏针茅草原群落初级生产力的影响. 植物生态学报. 1999, 23(2): 60–65
[27] Ni J. Estimating net primary productivity of grasslands from field biomass measurements in temperate northern China. Plant Ecology, 2004, 174(2): 217–234
[28] Fang J, Piao S, Zhou L, et al. Precipitation patterns alter growth of temperate vegetation. Geophysical Research Letters, 2005, 32(21): 365?370
[29] Bai Y, Wu J, Pan Q, et al. Positive linear relationship between productivity and diversity: evidence from the Eurasian Steppe. Journal of Applied Ecology, 2007, 44(5): 1023–1034
[30] 李香真, 曲秋皓. 蒙古高原草原土壤微生物量碳氮特征. 土壤学报, 2002, 39(1): 91–98
[31] Fan J, Zhong H, Harris W, et al. Carbon storage in the grasslands of China based on field measurements of above-and below-ground biomass. Climatic Change, 2008, 86: 375–396
[32] McCulley R L, Burke I C, Nelson J A, et al. Regional patterns in carbon cycling across the Great Plains of North America. Ecosystems, 2005, 8(1): 106–121
[33] Elser J J, Bracken M E, Cleland E E, et al. Global analysis of nitrogen and phosphorus limitation of primary producers in freshwater, marine and terrestrial ecosystems. Ecology letters, 2007, 10(12): 1135–1142
[34] Craine J M, Jackson R D. Plant nitrogen and phos北京大学学报(自然科学版) 第51 卷 第4 期 2015 年7 月 666 phorus limitation in 98 North American grassland soils. Plant and Soil, 2010, 334: 73–84
[35] 车敦仁. 青海高寒牧区禾草施磷施氮的增产效应. 草业科学, 1990, 7(5): 15–20
[36] 姚骅, 陆建华, 蔡立群, 等. 玛曲退化草地主要植被特征对不同施肥处理的响应. 甘肃农业大学学报, 2009, 44(1): 127–131
[37] 裴海昆. 不同施肥量对天然草地土壤酶活性的影响. 青海畜牧兽医杂志, 2001, 31(2): 15–16
[38] 杨鹏鸣, 周修任. 不同施肥水平对南瓜根冠比和壮苗指标的影响. 西南农业学报, 2010, 23(1): 115–118
[39] 孟凡枝, 杨鹏鸣. 不同施肥水平对三色堇根冠比和壮苗指数的影响. 中国农学通报, 2010, 26(6): 216– 218
[40] 王忠强, 吴良欢, 刘婷婷, 等. 供氮水平对爬山虎 (Parthenocissus tricuspidata Planch)生物量及养分分配的影响. 生态学报, 2007, 27(8): 3435–3441
[41] 傅声雷, Ferris H. 植物种类、大气二氧化碳和土壤氮素的交互作用或累加效应控制“植物–土壤”系统的碳分配. 中国科学: C 辑, 2006, 36(3): 273–282
[42] Tilman D. Plant strategies and the dynamics and structure of plant communities. Princeton, NJ: Princeton University Press, 1988
[43] Rajaniemi T K. Why does fertilization reduce plant species diversity? Testing three competition-based hypotheses. Journal of Ecology, 2002, 90(2): 316–324
[44] Zerihun A, Montagu K D. Belowground to aboveground biomass ratio and vertical root distribution responses of mature Pinus radiata stands to phosphorus fertilization at planting. Canadian Journal of Forest Research, 2004, 34(9): 1883–1894
[45] Schulze E D. Air pollution and forest decline in a spruce (Picea abies) forest. Science, 1989, 244: 776– 783
[46] Persson H, Ahlström K, Clemensson-Lindell A. Nitrogen addition and removal at Gårdsjön — effects on fine-root growth and fine-root chemistry. Forest Ecology and Management, 1998, 101(1): 199–205
[47] 樊维, 蒙荣, 陈全胜. 不同施氮水平对克氏针茅草原地上地下生物量分配的影响. 畜牧与饲料科学, 2010, 31(2): 74–76
[48] Jackson R B, Canadell J, Ehleringer J R, et al. A global analysis of root distributions for terrestrial biomes. Oecologia, 1996, 108(3): 389–411 |