Acta Scientiarum Naturalium Universitatis Pekinensis
Previous Articles Next Articles
HE Feiyan1, HE Yanxiang1, LIU Nan1,2, LIU Jianbo1, PENG Min1
Received:
Online:
Published:
贺飞艳1,何炎祥1,刘楠1,2,刘健博1,彭敏1
Abstract: Combined with TF-IDF method and variance statistical forumla, a new method for the extraction of multi-class feature is presented. This microblog short text oriented extraction method is used to determine the fine-grained sentiment type. Then the processes of fine-grained sentiment analysis is bulit. This method is used to praticipate the NLP&CC2013 evaluation, and the effectiveness of this method is proved by the good ranking of the subimitted data.
Key words: natural language processing, text sentiment analysis, fine-grained sentiment analysis, multi-class feature extraction
摘要: 结合TF-IDF方法与方差统计方法, 提出一种实现多分类特征抽取的计算方法。采用先极性判断, 后细粒度情感判断的处理方法, 构建细粒度情感分析与判断流程, 并将其应用于微博短文本的细粒度情感判断。通过NLP&CC2013评测所提供的训练语料对该方法有效性进行验证, 结果表明该方法具有较好的抽取效果。
关键词: 自然语言处理, 文本情感分析, 细粒度情感, 多分类特征抽取
CLC Number:
TP391
HE Feiyan,HE Yanxiang,LIU Nan,LIU Jianbo,PENG Min. A Microblog Short Text Oriented Multi-class Feature Extraction Method of Fine-Grained Sentiment Analysis[J]. Acta Scientiarum Naturalium Universitatis Pekinensis.
贺飞艳,何炎祥,刘楠,刘健博,彭敏. 面向微博短文本的细粒度情感特征抽取方法[J]. 北京大学学报(自然科学版).
Add to citation manager EndNote|Ris|BibTeX
URL: https://xbna.pku.edu.cn/EN/
https://xbna.pku.edu.cn/EN/Y2014/V50/I1/48