Acta Scientiarum Naturalium Universitatis Pekinensis
Next Articles
RAO Junyang, JIA Aixia, FENG Yansong, ZHAO Dongyan
Received:
Online:
Published:
饶俊阳,贾爱霞,冯岩松,赵东岩
Abstract: The authors concentrate on exploiting the background knowledge to address the semantic analysis in content-based filtering. An Ontology Based Similarity Model (OBSM) is proposed to calculate the news-user similarity through collaboratively built ontological structures. In order to deal with the noisy nature of these coarse-grained structures, an ontology based clustering model is introduced into the framework, called X-OBSM, which clusters concepts of a user profile on a coarse-grained ontology. Experiment results show that both OBSM and X-OBSM outperform the baselines by a large margin, specifically, X-OBSM performs better than OBSM in both quality and efficiency.
Key words: personalized recommendation, user profiling, ontology
摘要: 为了更好地对新闻和用户进行建模, 将语义相似度模型引入基于内容的推荐系统中, 挖掘两者之间的语义关联。提出一种基于本体结构的相似度模型(OBSM), 利用在线百科构建的本体结构, 计算新闻和用户之间的语义相似度。为了降低本体结构上噪音数据对推荐效果带来的影响, 提出X-Ontology聚类算法对本体结构进行清理, 并衍生出OBSM的升级模型X-OBSM。中文和英文实验表明, OBSM和X-OBSM比基准模型具有更好的推荐效果, 尤其是对本体结构进行清理后, X-OBSM具有比OBSM更高的计算效率。
关键词: 个性化推荐, 用户建模, 本体结构
CLC Number:
TP18
RAO Junyang,JIA Aixia,FENG Yansong,ZHAO Dongyan. Ontology-Based News Personalized Recommendation[J]. Acta Scientiarum Naturalium Universitatis Pekinensis.
饶俊阳,贾爱霞,冯岩松,赵东岩. 基于本体结构的新闻个性化推荐[J]. 北京大学学报(自然科学版).
Add to citation manager EndNote|Ris|BibTeX
URL: https://xbna.pku.edu.cn/EN/
https://xbna.pku.edu.cn/EN/Y2014/V50/I1/1