Acta Scientiarum Naturalium Universitatis Pekinensis ›› 2016, Vol. 52 ›› Issue (6): 1005-1013.DOI: 10.13209/j.0479-8023.2016.046

Previous Articles     Next Articles

Velocity and Effective Anisotropic Parameter Analysis Using Nonhyperbolic Traveltime Based on Deterministic Trace Resorting Method

REN Yan1,2,†, LIU Zhipeng1, LI Shilin1   

  1. 1. School of Earth and Space Science, Peking University, Beijing 100871
    2. Research Institute of Petroleum Exploration and Development, Beijing 100083
  • Received:2015-05-07 Revised:2015-05-19 Online:2016-11-20 Published:2016-11-20
  • Contact: REN Yan, E-mail: renyan2012(at)foxmail.com

基于确定性道重排法的非双曲线走时速度及等效各向异性参数分析

任岩1,2,†, 刘志鹏1, 李世林1   

  1. 1. 北京大学地球与空间科学学院, 北京 100871
    2. 中国石油勘探开发研究院, 北京 100083
  • 通讯作者: 任岩, E-mail: renyan2012(at)foxmail.com

Abstract:

The lower lateral spectral resolution is caused by the divergence of energy clots in the velocity and effective anisotropic parameter spectra when standard semblance operator is used. To solve the problem, the deterministic trace resorting differential semblance operator is introduced. By resorting the seismic traces, the differential semblance operator is sensitive to the moveout between the adjacent seismic traces, which maximize the spectral resolution. This method could be firstly applied to effective anisotropic parameter analysis using nonhyperbolic traveltime. The synthetic and field data examples are introduced to testify the efficiency of the new method, and the results confirm that spectral resolution increases a lot compared with standard semblance method.

Key words: deterministic trace resorting, differential semblance, nonhyperbolic traveltime, effective anisotropic parameter, high order velocity analysis

摘要:

使用标准相似系数算子计算速度谱和等效各向异性参数谱时, 谱上会出现能量团的拖尾现象, 谱横向分辨率低, 给准确拾取参数带来困难。针对这一问题, 引入基于确定性道重排的微分相似系数算子, 将归一化微分相似系数及确定性道重排法相结合, 利用微分算子中的做差运算对地震道间时差的敏感性, 放大相干算子, 提高谱分辨率。将该方法应用于非双曲型走时等效各向异性参数分析, 通过对模型及实际数据的测试, 得到分辨率较高的速度谱和等效各向异性参数谱, 且分辨率明显优于标准相似系数法。

关键词: 确定性道重排, 微分相似系数, 非双曲走时, 等效各向异性参数, 高阶速度分析

CLC Number: