Acta Scientiarum Naturalium Universitatis Pekinensis
Previous Articles Next Articles
ZHANG Xingwu, HUANG Kefu, LIU Kaixin
Received:
Online:
Published:
张兴武, 黄克服, 刘凯欣
Abstract: A condition of transforming general linear dynamical systems into linear Birkhoffian dynamical systems is studied. The condition and the procedure of transformation is given and proved. A theorem of the equivalence between linear Birkhoffian systems and linear Hamiltonian systems is given. According to the condition given by using the Jordan form, the non-degenerate condition of the Birkhoff tensor is analyzed from several aspects.
Key words: linear dynamical systems, Birkhoffian equations, Hamiltonian equations, Jordan form
摘要: 研究一般线性动力系统何时转化为线性自治Birkhoff动力系统的问题,给出线性自治Birkhoff动力系统与线性自治Hamilton动力系统等价性的定理,并推导出2n维线性动力系统转化为线性自治Birkhoff动力系统条件,通过运用若当形对转化条件进行分析,分情况给出Bikhoff张量非退化的条件。
关键词: 线性动力系统, Birkhoff方程, Hamilton方程, 若当形
CLC Number:
O175
ZHANG Xingwu,HUANG Kefu,LIU Kaixin. A Condition of Transforming General Dynamical Systems into Linear Birkhoffian Dynamical Systems[J]. Acta Scientiarum Naturalium Universitatis Pekinensis.
张兴武, 黄克服, 刘凯欣. 线性动力系统可化为线性自治Birkhoff动力系统的条件[J]. 北京大学学报(自然科学版).
Add to citation manager EndNote|Ris|BibTeX
URL: https://xbna.pku.edu.cn/EN/
https://xbna.pku.edu.cn/EN/Y2003/V39/I3/309