Acta Scientiarum Naturalium Universitatis Pekinensis

    Next Articles

Flow-Shop Scheduling Problem Based Improved Adaptive Genetic Algorithms

CHI Bin1, YE Qingkai1, XING Fei2   

  1. 1Department of Mechanics and Engineering Science, Peking University, Beijing, 100871, E-mail: chibin@mech.pku.edu.cn; 2Department of Mathematics, Inner Mongolia University, Hohhot, 010021
  • Received:2002-05-14 Online:2003-05-20 Published:2003-05-20

用改进的遗传算法求解流水车间作业排序问题

迟彬1,叶庆凯1,行飞2   

  1. 1北京大学力学与工程科学系,北京,100871;2内蒙古大学数学系,呼和浩特,010021

Abstract: Two kinds of improved adaptive genetic algorithms and encoding & decoding methods are presented. The experiment data shows that the improved adaptive genetic algorithms are superior to the pure genetic algorithms and other adaptive genetic algorithms in qualify of solution and efficiency.

Key words: flow-shop, scheduling, adaptive, genetic-algorithms

摘要: 针对流水车间(Flow-shop)作业排序问题,提出了两种改进的自适应遗传算法并给出了两种编码、解码方案。把此算法与现有的几种解法进行了比较,实验数据表明,改进的遗传算法在求解质量和效率上均优于传统的遗传算法和其他自适应遗传算法。

关键词: 流水车间, 作业排序, 自适应, 遗传算法

CLC Number: