Acta Scientiarum Naturalium Universitatis Pekinensis
Previous Articles Next Articles
LIU Yanjun1,ZHU Yixin2
Received:
Online:
Published:
刘燕俊1,朱一心2
Abstract: Based on Ashrafi's idea,n-normalizer groups are defined and investigated.First,some elementary properties about n-normalizer groups are given.Secondly,the existence of finite n-normalizer groups for every positive integer n are proved.Thirdly,the nilpotency and derived lengths of 2,3-normalizer groups are investigated. In particular,it is shown that G″=1 if # Norm(G)=2, and G?=1 if # Norm (G)=3 and G has abelian Sylow 2-subgroups.
Key words: finite groups, n-normalizer groups, nilpotency, derived length
摘要: 基于Ashrafi的想法,定义了n-正规化子群并对其进行研究。首先由定义得到n-正规化子群的一些基本性质。其次,对于任意的正整数n证明了n-正规化子群的存在性。再次,证明了对于有限群G,若#Norm(G)≤3,则G为幂零群;若假定|G|为奇数,则当#Norm(G)≤4时G为幂零群。最后,证明了若#Norm(G)=2,则G″=1;若#Norm(G)=3且G有交换的Sylow2-子群,则G?=1。
关键词: 有限群, n-正规化子群, 幂零群, 导列长
CLC Number:
O152
LIU Yanjun,ZHU Yixin. Finite n-Normalizer Groups[J]. Acta Scientiarum Naturalium Universitatis Pekinensis.
刘燕俊,朱一心. 有限n-正规化子群[J]. 北京大学学报(自然科学版).
Add to citation manager EndNote|Ris|BibTeX
URL: https://xbna.pku.edu.cn/EN/
https://xbna.pku.edu.cn/EN/Y2009/V45/I1/6