Acta Scientiarum Naturalium Universitatis Pekinensis
Previous Articles Next Articles
LI Baoyi1, ZHANG Zhifen2
Received:
Online:
Published:
李宝毅1, 张芷芬2
Abstract: By means of finitely-smooth normal form theory and the method of infinitesimal analysis, it is proved that the cyclicity of polycycle S(3) of planar Hamiltonian system under small perturbations with certain nondegenerate condition is 3, thus the results of A.Mourtada about the cyclicity of isolated S(3) is generalized.
Key words: polycycle, cyclicity, finitely-smooth normal form
摘要: 利用Yu S Ilyashenko等人的有限光滑正规形理论,用无穷小分析的方法研究了平面Hamilton系统的奇异环S(3)在自治小扰动下的分歧现象,证明了在非退化条件下,S(3)的环性为3,推广了A.Mourtada关于孤立的奇异环S(3)的环性的结论。
关键词: 奇异环, 环性, 有限光滑正规形
CLC Number:
O175.12
LI Baoyi,ZHANG Zhifen. The Bifurcation Phenomena of Polycycle S(3) of Hamiltonian System Under Small Perturbations[J]. Acta Scientiarum Naturalium Universitatis Pekinensis.
李宝毅, 张芷芬. Hamilton系统的奇异环S(3)在小扰动下的分歧现象[J]. 北京大学学报(自然科学版).
0 / Recommend
Add to citation manager EndNote|Ris|BibTeX
URL: http://xbna.pku.edu.cn/EN/
http://xbna.pku.edu.cn/EN/Y1998/V34/I5/588