Aiming at the problem that the Gauss-Newton (GN) method is sensitive to the initial information matrix in the Bundle Adjustment (BA) model, which leads to limited application scenarios, the paper proposes a novel method BFGS-GN using BFGS (Broyden-Fletcher-Goldfarb-Shanno) algorithm to improve the traditional Gauss-Newton method. When the information matrix of the Gauss-Newton method loses positive definiteness, BFGS algorithm can be used to modify the normal equations, which fundamentally eliminates the mathematical defect that the Gauss-Newton method is sensitive to initial values. Experimental results demonstrate that proposed method is robust to different types of initials. The same accuracy and the number of iterations as GN can be obtained when the initial values are good. As for bad inputs, GN-based BA method cannot work but BFGS-GN can converge to a minimum.

%U https://xbna.pku.edu.cn/EN/10.13209/j.0479-8023.2020.098