北京大学学报自然科学版   2016, Vol. 52 Issue(4): 658-668

文章信息

张毅, 周燕
ZHANG Yi, ZHOU Yan
基于Riesz导数的分数阶Birkhoff系统的Noether对称性与守恒量
Noether Symmetry and Conserved Quantity for Fractional Birkhoffian Systems in Terms of Riesz Derivatives
北京大学学报(自然科学版), 2016, 52(4): 658-668
Acta Scientiarum Naturalium Universitatis Pekinensis, 2016, 52(4): 658-668

文章历史

收稿日期: 2015-10-07
修回日期: 2016-02-10
网络出版日期: 2016-07-14
基于Riesz导数的分数阶Birkhoff系统的Noether对称性与守恒量
张毅1, 周燕2     
1. 苏州科技大学土木工程学院, 苏州 215011;
2. 苏州市工业园区娄葑学校, 苏州 215021
摘要: 提出并研究Riesz分数阶导数下分数阶Birkhoff系统的Noether对称性与守恒量。分别在Riesz-Riemann-Liouville分数阶导数和Riesz-Caputo分数阶导数下, 建立分数阶Pfaff变分问题, 给出分数阶Birkhoff方程。基于分数阶Pfaff作用量在无限小变换下的不变性, 建立分数阶Birkhoff系统的Noether定理。定理的证明分成两步:一是在时间不变的无限小变换下给出证明; 二是利用时间重新参数化技术得到一般情况下的分数阶Noether定理。最后举例说明结果的应用。
关键词: 分数阶Birkhoff系统     Noether对称性     分数阶守恒量     Riesz分数阶导数    
Noether Symmetry and Conserved Quantity for Fractional Birkhoffian Systems in Terms of Riesz Derivatives
ZHANG Yi1, ZHOU Yan2     
1. College of Civil Engineering, Suzhou University of Science and Technology, Suzhou 215011;
2. Suzhou Industrial Park Loufeng School, Suzhou 215021
Corresponding author: ZHANG Yi, E-mail: zhy@mail.usts.edu.cn
Abstract: The Noether symmetry and the conserved quantity for a fractional Birkhoffian system in terms of Riesz fractional derivatives are studied. The fractional Pfaff variational problems are presented and the fractional Birkhoff's equations are established within Riesz-Riemann-Liouville fractional derivatives and Riesz-Caputo fractional derivatives, respectively. Based on the invariance of the Pfaff action under the infinitesimal transformations, the Noether theorems for the fractional Birkhoffian system are given. The proof of the Noether theorem is done in two steps: first, the Noether theorem under a special one-parameter group of infinitesimal transformations without transforming the time is proved; second, by using a technique of time-reparameterization, the Noether theorem in its general form is obtained. Two examples are given to illustrate the application of the results.
Key words: fractional Birkhoffian system     Noether symmetry     fractional conserved quantity     Riesz fractional derivative    

动力学系统对称性的研究一直是分析力学的重要发展方向。1918年, Noether[1]研究了Hamilton作用量在无限小变换下的不变性质, 揭示了力学系统的守恒量与其内在的动力学对称性之间的关系。Djukić等[2]将Noether定理推广到完整非保守系统, 李子平[3]、Bahar等[4]和Liu[5]进一步将Noether定理推广到非完整非保守系统。梅凤翔[6]用Pfaff作用量代替Hamilton作用量, 通过研究Pfaff作用量在无限小变换的广义准对称性, 建立了Birkhoff系统的Noether理论。近年来, 对Noether对称性的研究取得一些重要成果[6-10]

分数阶微积分的概念最早出现在L’Hospital于1695年写给Leibniz的信中, 但是直到1974年, 第一本关于分数阶微积分理论的著作[11]才问世。近20余年来, 随着分数阶微积分应用领域的不断拓展, 分数阶微积分及其应用研究有了很大的发展。1996年, Riewe[12-13]首次将分数阶微积分应用于非保守系统动力学建模, 提出并初步研究了分数阶变分问题。之后, Agrawal[14-15]、Baleanu等[16-17]、Atanacković等[18-19]和El-Nabulsi等[20-22]对分数阶变分问题进行了深入研究。Frederico等[23-26]最早开展分数阶Noether对称性与守恒量的研究, 基于Riemann-Liouville分数阶导数定义[23-24]、Caputo分数阶导数定义[25]以及Riesz-Caputo分数阶导数定义[26], 分别考虑时间不变和时间变化的无限小变换作用, 得到分数阶Noether定理。此外, Frederico等[27-28]基于El-Nabulsi动力学模型研究了类分数阶作用变分的不变性问题。近年来, 约束力学系统基于分数阶模型的Noether对称性与守恒量的研究已经取得一些重要成果[29-35]。但是, 这些研究主要限于分数阶Lagrange系统和分数阶Hamilton系统。

本文基于Riesz分数阶导数的定义, 研究分数阶Birkhoff系统的分数阶Noether对称性。从分数阶Pfaff作用量在无限小变换下的不变性出发, 分别在时间不变和时间变化的无限小变换下, 研究分数阶Pfaff作用量的不变性, 建立分数阶Birkhoff系统的Noether定理。

1 分数阶导数

本节列出研究中涉及的Riemann-Liouville分数阶导数、Caputo分数阶导数和Riesz分数阶导数的定义, 以及Riesz分数阶导数下的分部积分公式。具体的证明和讨论可参见文献[36-37]。

Riemann-Liouville分数阶左导数定义为

$ {}_{{t_1}}D_t^\alpha f(t) = \frac{1}{{\Gamma (m-\alpha )}}{\left( {\frac{{\rm{d}}}{{{\rm{d}}t}}} \right)^m}\int_{{t_1}}^t {\frac{{f(\tau )}}{{{{(t-\tau )}^{\alpha-m + {\rm{1}}}}}}{\rm{d}}\tau } 。 $ (1)

Riemann-Liouville分数阶右导数为

$ {}_tD_{{t_2}}^\alpha f(t) = \frac{1}{{\Gamma (m-\alpha )}}{\left( {-\frac{{\rm{d}}}{{{\rm{d}}t}}} \right)^m}\int_t^{{t_2}} {\frac{{f(\tau )}}{{{{(\tau-t)}^{\alpha - m + {\rm{1}}}}}}{\rm{d}}\tau } 。 $ (2)

Caputo分数阶左导数定义为

$ _{{t_1}}^{\rm{C}}D_t^\alpha f(t) = \frac{1}{{\Gamma (m-\alpha )}}\int_{{t_1}}^t {\frac{{{f^{(m)}}(\tau )}}{{{{(t-\tau )}^{\alpha-m + {\rm{1}}}}}}{\rm{d}}\tau } 。 $ (3)

Caputo分数阶右导数为

$ _t^{\rm{C}}D_{{t_{\rm{2}}}}^\alpha f(t) = \frac{{{{(-1)}^m}}}{{\Gamma (m-\alpha )}}\int_t^{{t_2}} {\frac{{{f^{(m)}}(\tau )}}{{{{(\tau-t)}^{\alpha - m + {\rm{1}}}}}}{\rm{d}}\tau }, $ (4)

其中Γ (*)是Euler Gamma函数, α是导数的阶, 且m-1≤α < m, m为正整数。如果α是整数, 上述分数阶导数成为整数阶导数, 有

$ \left\{ \begin{array}{l} {}_{{t_1}}D_t^\alpha f(t){\kern 1pt} {\kern 1pt} = {}_{{t_1}}^CD_t^\alpha f(t){\kern 1pt} {\kern 1pt} = {\left( {\frac{{\rm{d}}}{{{\rm{d}}t}}} \right)^\alpha }f(t), \\ {}_tD_{{t_2}}^\alpha f(t){\kern 1pt} = {}_t^CD_{{t_2}}^\alpha f(t){\kern 1pt} {\kern 1pt} = {\left( {-\frac{{\rm{d}}}{{{\rm{d}}t}}} \right)^\alpha }f(t)\; \end{array} \right. $ (5)

Riesz-Riemann-Liouville分数阶导数定义为

$ _{{t_1}}^{\rm{R}}D_{{t_2}}^\alpha f(t) = \frac{1}{{2\Gamma (m-\alpha )}}{\left( {\frac{{\rm{d}}}{{{\rm{d}}t}}} \right)^m}\int_{{t_1}}^{{t_2}} {\frac{{f(\tau )}}{{|t-\tau {|^{\alpha-m + {\rm{1}}}}}}{\rm{d}}\tau }, $ (6)

Riesz-Caputo分数阶导数定义为

$ {}_{{t_1}}^{{\rm{RC}}}D_{{t_2}}^\alpha f(t) = \frac{1}{{{\rm{2}}\Gamma (m-\alpha )}}\int_{{t_1}}^{{t_2}} {\frac{{{f^{(m)}}(\tau )}}{{|t-\tau {|^{\alpha-m + {\rm{1}}}}}}{\rm{d}}\tau } 。 $ (7)

由上述定义可知, Riesz-Riemann-Liouville分数阶导数与Riemann-Liouville分数阶导数之间的关系为

$ {}_{{t_1}}^{\rm{R}}D_{{t_2}}^\alpha f(t) = \frac{1}{2}\left[{{}_{{t_1}}D_t^\alpha f(t) + {{(-1)}^m}{}_tD_{{t_2}}^\alpha f(t)} \right]; $ (8)

Riesz-Caputo分数阶导数与Caputo分数阶导数之间的关系为

$ {}_{{t_1}}^{{\rm{RC}}}D_{{t_2}}^\alpha f(t) = \frac{1}{2}\left[{{}_{{t_1}}^{\rm{C}}D_t^\alpha f(t) + {{(-1)}^m}{}_t^{\rm{C}}D_{{t_2}}^\alpha f(t)} \right]。 $ (9)

Riesz-Riemann-Liouville分数阶导数下的分部积分公式[15]

$ \begin{array}{l} \int_{{t_1}}^{{t_2}} {g(t)({}_{{t_1}}^RD_{{t_{\rm{2}}}}^\alpha f(t)){\rm{d}}t} {\kern 1pt} \\ = {(- 1)^m}\int_{t1}^{{t_2}} {f(t)({}_{{t_1}}^RD_{{t_2}}^\alpha g(t)){\rm{d}}t + } \\ \frac{1}{2}\sum\limits_{k = 0}^{m- 1} {{{\left. {\left[{{}_tD_{{t_2}}^{\alpha-k-1}g(t)\frac{{{{\rm{d}}^k}f(t)}}{{{\rm{d}}{t^k}}}} \right]} \right|}_{t = {t_2}}}} + \\ \frac{1}{2}\sum\limits_{k = 0}^{m - 1} {{{( - 1)}^{k + m}}{{\left. {\left[{{}_{{t_1}}D_t^{\alpha-k-1}g(t)\frac{{{{\rm{d}}^k}f(t)}}{{{\rm{d}}{t^k}}}} \right]} \right|}_{t = {t_1}}}} 。 \end{array} $ (10)

Riesz-Caputo分数阶导数下的分部积分公式[15]如下:

$ \begin{array}{l} \int_{t1}^{{t_2}} {g(t){}_{{t_1}}^{{\rm{RC}}}D_{{t_2}}^\alpha f(t){\rm{d}}t} \\ = {(-1)^m}\int_{{t_1}}^{{t_2}} {f(t){}_{{t_1}}^{\rm{R}}D_{{t_2}}^\alpha g(t){\rm{d}}t + } \\ \left. {\sum\limits_{k = 1}^{m-1} {{{(-1)}^k}{}_{{t_1}}^{\rm{R}}D_{{t_2}}^{\alpha + k - m}g(t)\frac{{{{\rm{d}}^{m - 1 - k}}}}{{{\rm{d}}{t^{m - 1 - k}}}}f(t)} } \right|_{{t_1}}^{{t_2}}。 \end{array} $ (11)
2 Riesz-Riemann-Liouville导数下分数阶Birkhoff系统的Noether对称性

考虑由2n个Birkhoff变量${a^\mu }(\mu=1, \; 2, \; ..., \; 2n)$描述的Birkhoff系统。假设系统的Birkhoff函数$B=B (t{\rm{, }}\; {a^\nu })$, Birkhoff函数组为${R_\mu }={R_\mu }(t, {a^\nu })$, 分数阶导数的阶为α, 且0 < α < 1。积分

$ S({a^\mu }( \cdot )) = \int_{{t_1}}^{{t_2}} {\left\{ {\sum\limits_{\nu = 1}^{2n} {{R_\nu }(t, \;{a^\mu }){}_{{t_1}}^{\rm{R}}D_{{t_2}}^\alpha {a^\nu }}-B(t, \;{a^\mu })} \right\}} {\rm{d}}t $ (12)

称为基于Riesz-Riemann-Liouville导数的分数阶Pfaff作用量。等时变分原理

$ \delta S = 0 $ (13)

带有交换关系

$ \begin{array}{l} \delta {}_{{t_1}}^{\rm{R}}D_{{t_2}}^\alpha {a^\nu } = {}_{{t_1}}^{\rm{R}}D_{{t_2}}^\alpha \delta {a^\nu }\\ (\nu = 1, 2, \;..., 2n) \end{array} $ (14)

以及端点条件

$ \begin{array}{l} {\left. {\delta {a^\nu }} \right|_{t = {t_1}}} = {\left. {\delta {a^\nu }} \right|_{t = {t_2}}} = 0\\ (\nu = 1, 2, \;..., 2n) \end{array} $ (15)

称为基于Riesz-Riemann-Liouville导数的分数阶Pfaff-Birkhoff原理。

由分数阶Pfaff-Birkhoff原理(13)~(15)容易导出如下方程[38]:

$ \begin{array}{l} \sum\limits_{\nu = 1}^{2n} {\left( {\frac{{\partial {R_\nu }}}{{\partial {a^\mu }}}{}_{{t_1}}^{\rm{R}}D_{{t_2}}^\alpha {a^\nu }} \right)-\frac{{\partial B}}{{\partial {a^\mu }}}-{}_{{t_1}}^{\rm{R}}D_{{t_2}}^\alpha {R_\mu }} = {\rm{0}}\\ (\mu = 1, \;2, \;..., \;2n) \end{array} $ (16)

以及相应的横截性条件

$ \frac{1}{2}\sum\limits_{\nu = 1}^{2n} {{{\left. {[({}_tD_{{t_2}}^{\alpha-1}{R_\nu })\delta {a^\nu }]} \right|}_{t = {t_2}}}} - \frac{1}{2}\sum\limits_{\nu = 1}^{2n} {{{\left. {[({}_{{t_1}}D_t^{\alpha-1}{R_\nu })\delta {a^\nu }]} \right|}_{t = {t_1}}}} = 0。 $ (17)

由端点条件(15)易知横截性条件(17)恒成立。方程(16)称为Riesz-Riemann-Liouville导数下分数阶Birkhoff系统的分数阶Birkhoff方程。

α→1时, 方程(16)成为

$ \begin{array}{l} \sum\limits_{\nu = 1}^{2n} {\left( {\frac{{\partial {R_\nu }}}{{\partial {a^\mu }}}-\frac{{\partial {R_\mu }}}{{\partial {a^\nu }}}} \right)} {{\dot a}^\nu }-\left( {\frac{{\partial B}}{{\partial {a^\mu }}} + \frac{{\partial {R_\mu }}}{{\partial t}}} \right) = 0\\ (\mu = 1, \;2, \;..., \;2n), \end{array} $ (18)

方程(18)是经典的Birkhoff方程。因此, 经典Birk-hoff方程是Riesz-Riemann-Liouville导数下的分数阶Birkhoff方程(16)的特例。

引进时间不变的单参数无限小变换群:

$ \begin{array}{l} {{\bar a}^\mu }(t) = {a^\mu }(t) + \varepsilon {\xi _\mu }(t, \;{a^\nu }) + o(\varepsilon )\\ (\mu = 1, \;2, \;..., \;2n), \end{array} $ (19)

下面, 定义Riesz-Riemann-Liouville导数下的分数阶Birkhoff方程(16)在无限小变换(19)下的Noether对称性, 并给出相应的分数阶守恒量。

定义1 如果分数阶Pfaff作用量(12)在无限小变换(19)作用下, 对于任意子区间$\left[{{T_1}, \; {T_2}} \right] \subseteq ({t_1}, \; {t_2})$,

$ \begin{array}{l} \int_{{T_1}}^{T_2^{}} {\left\{ {\sum\limits_{\mu = 1}^{2n} {{R_\mu }(t, \;{a^\nu }){}_{{t_1}}^{\rm{R}}D_{{t_2}}^\alpha {a^\mu }}-B(t, \;{a^\nu })} \right\}{\rm{d}}t} \\ = \int_{{T_1}}^{{T_2}} {\left\{ {\sum\limits_{\mu = 1}^{2n} {{R_\mu }(t, \;{{\bar a}^\nu }){}_{{t_1}}^{\rm{R}}D_{{t_2}}^\alpha {{\bar a}^\mu }}-B(t, \;{{\bar a}^\nu })} \right\}\;{\rm{d}}t} \end{array} $ (20)

始终成立, 则称这种不变性为Riesz-Riemann-Liouville导数下的分数阶Birkhoff系统(16)在时间不变的无限小变换下的Noether对称性。

定理1 对于Riesz-Riemann-Liouville导数下的分数阶Birkhoff系统(16), 如果时间不变的无限小变换(19)对应于定义1意义下的Noether对称性, 那么

$ \begin{array}{l} \sum\limits_{\mu = 1}^{2n} {\left( {\sum\limits_{\nu = 1}^{2n} {\frac{{\partial {R_\mu }(t, \;{a^\nu })}}{{\partial {a^\nu }}}{\xi _\nu }(t, \;{a^\mu })} } \right){}_{{t_1}}^{\rm{R}}D_{{t_2}}^\alpha {a^\mu }} + \\ \sum\limits_{\mu = 1}^{2n} {{R_\mu }(t, \;{a^\nu }){}_{{t_1}}^{\rm{R}}D_{{t_2}}^\alpha {\xi _\mu }(t, \;{a^\nu })}-\\ \sum\limits_{\nu = 1}^{2n} {\frac{{\partial B(t, \;{a^\nu })}}{{\partial {a^\nu }}}{\xi _\nu }(t, \;{a^\mu })} = 0 \end{array} $ (21)

成立。

证明 由积分区间[T1, T2]的任意性, 通过式(20)可得

$ \begin{array}{l} \sum\limits_{\mu = 1}^{2n} {{R_\mu }(t, \;{a^\nu }){}_{{t_1}}^{\rm{R}}D_{{t_2}}^\alpha {a^\mu }}-B(t, \;{a^\nu })\\ = \sum\limits_{\mu = 1}^{2n} {{R_\mu }(t, \;{{\bar a}^\nu }){}_{{t_1}}^{\rm{R}}D_{{t_2}}^\alpha {{\bar a}^\mu }}-B(t, \;{{\bar a}^\nu }), \end{array} $ (22)

将式(22)两边对ε求导, 然后令ε=0, 有

$ \begin{array}{l} 0 = \sum\limits_{\mu = 1}^{2n} {\left( {\sum\limits_{\nu = 1}^{2n} {\frac{{\partial {R_\mu }(t, \;{a^\nu })}}{{\partial {a^\nu }}}{\xi _\nu }(t, \;{a^\mu })} } \right){}_{{t_1}}^{\rm{R}}D_{{t_2}}^\alpha {a^\mu }} + \\ \sum\limits_{\mu = 1}^{2n} {{R_\mu }(t, {a^\nu })\frac{{\rm{d}}}{{{\rm{d}}\varepsilon }}\left[{\frac{1}{{2\Gamma (m-\alpha )}}{{\left( {\frac{{\rm{d}}}{{{\rm{d}}t}}} \right)}^m} \cdot } \right.} \\ \int_{{t_1}}^{{t_2}} {{{\left| {t-\tau } \right|}^{m-\alpha - 1}}{a^\mu }(\tau ){\rm{d}}\tau + } \\ {\left. {\left. {\frac{\varepsilon }{{2\Gamma (m - \alpha )}}{{\left( {\frac{{\rm{d}}}{{{\rm{d}}t}}} \right)}^m}\int_{{t_1}}^{{t_2}} {{{\left| {t - \tau } \right|}^{m - \alpha - 1}}} {\xi _\mu }(\tau, \;{a^\nu })\;{\rm{d}}\tau } \right]} \right|_{\varepsilon = 0}} -\\ \sum\limits_{\nu = 1}^{2n} {\frac{{\partial B(t, \;{a^\nu })}}{{\partial {a^\nu }}}{\xi _\nu }(t, \;{a^\mu })} \\ = \sum\limits_{\mu = 1}^{2n} {\left( {\sum\limits_{\nu = 1}^{2n} {\frac{{\partial {R_\mu }(t, \;{a^\nu })}}{{\partial {a^\nu }}}{\xi _\nu }(t, \;{a^\mu })} } \right){}_{{t_1}}^{\rm{R}}D_{{t_2}}^\alpha {a^\mu }} + \\ \sum\limits_{\mu = 1}^{2n} {{R_\mu }(t, \;{a^\nu })} \frac{1}{{2\Gamma (m -\alpha )}}{\left( {\frac{{\rm{d}}}{{{\rm{d}}t}}} \right)^m} \cdot \\ \int_{{t_1}}^{{t_2}} {{{\left| {t -\tau } \right|}^{m - \alpha - 1}}{\xi _\mu }(\tau, \;{a^\nu }){\rm{d}}\tau } - \\ \sum\limits_{\nu = 1}^{2n} {\frac{{\partial B(t, \;{a^\nu })}}{{\partial {a^\nu }}}{\xi _\nu }(t, \;{a^\mu })}, \end{array} $ (23)

显然式(23)即为式(21)。

下面引入Riesz-Riemann-Liouville导数下的分数阶守恒量的概念[23-25]

定义2 $I (t, {a^\nu }, {}_{{t_1}}^{\rm{R}}D_{{t_2}}^\alpha {a^\nu })$是分数阶守恒量, 当且仅当沿着分数阶Birkhoff方程(16)的解曲线, 有

$ I(t, {a^\nu }, {}_{{t_1}}^{\rm{R}}D_{{t_2}}^\alpha {a^\nu }) = \sum\limits_{i = 1}^r {I_i^1(t, {a^\nu }, {}_{{t_1}}^{\rm{R}}D_{{t_2}}^\alpha {a^\nu }) \cdot I_i^2(t, {a^\nu }, {}_{{t_1}}^{\rm{R}}D_{{t_2}}^\alpha {a^\nu })}, $ (24)

其中r是任意整数, 对于每一组函数Ii1Ii2(i=1, 2, …, r), 满足

$ {}^{\rm{R}}D_t^\alpha (I_i^1(t, {a^\nu }, {}_{{t_1}}^{\rm{R}}D_{{t_2}}^\alpha {a^\nu }), I_i^2(t, {a^\nu }, {}_{{t_1}}^{\rm{R}}D_{{t_2}}^\alpha {a^\nu })) = 0 $ (25)

$ {}^{\rm{R}}D_t^\alpha (I_i^2(t, {a^\nu }, {}_{{t_1}}^{\rm{R}}D_{{t_2}}^\alpha {a^\nu }), I_i^1(t, {a^\nu }, {}_{{t_1}}^{\rm{R}}D_{{t_2}}^\alpha {a^\nu })) = 0, $ (26)

其中, 算子${}^{\rm{R}}D_t^\alpha \left ({f, g} \right)$定义为

$ {}^{\rm{R}}D_t^\alpha (f, g) = g{}_{{t_1}}^{\rm{R}}D_{{t_2}}^\alpha f + f{}_{{t_1}}^{\rm{R}}D_{{t_2}}^\alpha g。 $ (27)

α=1时, 式(27)给出

$ {}^{\rm{R}}D_t^1(f, g) = g{}_{{t_1}}^{\rm{R}}D_{{t_2}}^1f + f{}_{{t_1}}^{\rm{R}}D_{{t_2}}^1g = \dot fg + f\dot g = \frac{{\rm{d}}}{{{\rm{d}}t}}(fg)。 $ (28)

定理2 对于Riesz-Riemann-Liouville导数下的分数阶Birkhoff系统(16), 如果时间不变的无限小变换(19)对应于定义1意义下的Noether对称性, 那么

$ I(t, {a^\nu }, {}_{{t_1}}^{\rm{R}}D_{{t_2}}^\alpha {a^\nu }) = \sum\limits_{\mu = 1}^{2n} {{R_\mu }(t, \;{a^\nu }){\xi _\mu }(t, \;{a^\nu })} $ (29)

是系统的分数阶守恒量。

证明 由分数阶Birkhoff方程(16)可得

$ \frac{{\partial B}}{{\partial {a^\mu }}} = \sum\limits_{\nu = 1}^{2n} {\left( {\frac{{\partial {R_\nu }}}{{\partial {a^\mu }}}{}_{{t_1}}^{\rm{R}}D_{{t_2}}^\alpha {a^\nu }} \right)}-{}_{{t_1}}^{\rm{R}}D_{{t_2}}^\alpha {R_\mu }, $ (30)

由于时间不变的无限小变换(19)相应于定义1意义下的Noether对称性, 故将式(30)代入式(21), 得

$ \begin{array}{l} \sum\limits_{\mu = 1}^{2n} {\left( {\sum\limits_{\nu = 1}^{2n} {\frac{{\partial {R_\mu }}}{{\partial {a^\nu }}}{\xi _\nu }} } \right){}_{{t_1}}^{\rm{R}}D_{{t_2}}^\alpha {a^\mu }} + \sum\limits_{\mu = 1}^{2n} {{R_\mu }{}_{{t_1}}^{\rm{R}}D_{{t_2}}^\alpha {\xi _\mu }}-\\ \sum\limits_{\mu = 1}^{2n} {\sum\limits_{\nu = 1}^{2n} {\left( {\frac{{\partial {R_\nu }}}{{\partial {a^\mu }}}{}_{{t_1}}^{\rm{R}}D_{{t_2}}^\alpha {a^\nu }} \right)} } \;{\xi _\mu } + \sum\limits_{\mu = 1}^{2n} {{\xi _\mu }{}_{{t_1}}^{\rm{R}}D_{{t_2}}^\alpha {R_\mu }} = 0, \end{array} $ (31)

化简得

$ \sum\limits_{\mu = 1}^{2n} {{R_\mu }{}_{{t_1}}^{\rm{R}}D_{{t_2}}^\alpha {\xi _\mu }} + \sum\limits_{\mu = 1}^{2n} {{\xi _\mu }{}_{{t_1}}^{\rm{R}}D_{{t_2}}^\alpha {R_\mu }} = 0, $ (32)

$ \sum\limits_{\mu = 1}^{2n} {\{ {}^{\rm{R}}D_t^\alpha ({R_\mu }, \;{\xi _\mu })\} } = 0。 $ (33)

由定义2可知, (29)式是所论分数阶Birkhoff系统的分数阶守恒量。

下面, 考虑时间变化的单参数无限小变换群:

$ \left\{ \begin{array}{l} \bar t = t + \varepsilon \zeta (t, \;{a^\nu }) + o(\varepsilon ), \\ {{\bar a}^\mu }(t) = {a^\mu }(t) + \varepsilon {\xi _\mu }(t, {a^\nu }) + o(\varepsilon )\;\;\\ \;\;\;\;\;\;\;\;\;\;\;(\mu = 1, \;2, \;..., \;2n), \end{array} \right. $ (34)

定义分数阶Birkhoff系统(16)在无限小变换(34)下的Noether对称性, 并给出相应的分数阶守恒量。

定义3 如果分数阶Pfaff作用量(12)在无限小变换(34)作用下, 对于任意的子区间$\left[{{T_1}, \; {T_2}} \right] \subseteq ({t_1}, \; {t_2})$,

$ \begin{array}{l} \int_{{T_1}}^{{T_2}} {\left\{ {\sum\limits_{\mu = 1}^{2n} {{R_\mu }(t, \;{a^\nu }){}_{{t_1}}^{\rm{R}}D_{{t_2}}^\alpha {a^\mu }}-B(t, \;{a^\nu })} \right\}} \;{\rm{d}}t\\ = \int_{{{\bar T}_1}}^{{{\bar T}_2}} {\left\{ {\sum\limits_{\mu = 1}^{2n} {{R_\mu }(\bar t, \;{{\bar a}^\nu }){}_{{{\bar t}_1}}^{\rm{R}}D_{{{\bar t}_2}}^\alpha {{\bar a}^\mu }}-B(\bar t, \;{{\bar a}^\nu })} \right\}} \;{\rm{d}}\bar t \end{array} $ (35)

始终成立, 则称这种不变性为Riesz-Riemann-Liouville导数下的分数阶Birkhoff系统(16)在时间变化的无限小变换(34)下的Noether对称性。

定理3 对于Riesz-Riemann-Liouville导数下的分数阶Birkhoff系统(16), 如果时间变化的无限小变换(34)对应于定义3意义下的Noether对称性, 那么

$ I(t, {a^\nu }, {}_{{t_1}}^{\rm{R}}D_{{t_2}}^\alpha {a^\nu }) = \sum\limits_{\mu = 1}^{2n} {{R_\mu }{\xi _\mu }} + \left[{(1-\alpha )\sum\limits_{\mu = 1}^{2n} {{R_\mu }{}_{{t_1}}^{\rm{R}}D_{{t_2}}^\alpha {a^\mu }}-B} \right]\zeta $ (36)

是系统的分数阶守恒量。

证明 取关于时间t (t是独立变量)的李普希兹变换:

$ t \in \left[{{t_1}, \;\;{t_2}} \right] \mapsto \sigma f(\lambda ) \in \left[{{\sigma _1}, \;\;{\sigma _2}} \right], $ (37)

λ=0时, 满足

$ {t'_\sigma } = \frac{{{\rm{d}}t(\sigma )}}{{{\rm{d}}\sigma }} = f(\lambda ) = 1。 $

在变换(37)作用下, 分数阶Pfaff作用量(12)成为

$ \begin{array}{l} \bar S(t( \cdot ), {a^\mu }( \cdot ))\\ = \int_{{\sigma _1}}^{{\sigma _2}} {\left\{ {\sum\limits_{\mu = 1}^{2n} {{R_\mu }(t(\sigma ), {a^\nu }(t(\sigma )))} } \right.} {}_{{\sigma _1}}^{\rm{R}}D_{{\sigma _2}}^\alpha {a^\mu }(t(\sigma ))-\\ \left. {B(t(\sigma ), {a^\nu }(t(\sigma )))} \right\}{{t'}_\sigma }{\rm{d}}\sigma, \end{array} $ (38)

其中, t (σ1)=t1, t (σ2)=t2,

$ \begin{array}{l} {}_{{\sigma _1}}^{\rm{R}}D_{{\sigma _2}}^\alpha {a^\mu }(t(\sigma )) = \frac{1}{{2\Gamma (m-\alpha )}}{\left( {\frac{{\rm{d}}}{{{\rm{d}}t(\sigma )}}} \right)^m} \cdot \\ \int_{\frac{{{t_1}}}{{f(\lambda )}}}^{\frac{{{t_2}}}{{f(\lambda )}}} {{{\left| {\sigma f(\lambda )-\tau } \right|}^{m-\alpha - 1}}{a^\mu }(\tau {f^{ - 1}}(\lambda ))} \;{\rm{d}}\tau \\ = \frac{{{{({{t'}_\sigma })}^{ - \alpha }}}}{{2\Gamma (m - \alpha )}}{\left( {\frac{{\rm{d}}}{{{\rm{d}}\sigma }}} \right)^m}\int_{\frac{{{t_1}}}{{{{({{t'}_\sigma })}^2}}}}^{\frac{{{t_2}}}{{{{({{t'}_\sigma })}^2}}}} {|\sigma - s{|^{m - \alpha - 1}}{a^\mu }(s)} \;{\rm{d}}s\\ = {({{t'}_\sigma })^{ - \alpha }}{}_{{t_1}/{{({{t'}_\sigma })}^2}}^{\rm{R}}D_{{t_2}/{{({{t'}_\sigma })}^2}}^\alpha {a^\mu }(\sigma )。 \end{array} $ (39)

将式(39)代入式(38), 得

$ \begin{array}{l} = \int_{\sigma 1}^{{\sigma _2}} {\left\{ {\sum\limits_{\mu = 1}^{2n} {{R_\mu }(t(\sigma ), {a^\nu }(t(\sigma ))){{({{t'}_\sigma })}^{-\alpha }}} } \right.} \cdot \\ \left. {{}_{{t_1}/{{({{t'}_\sigma })}^2}}^{\rm{R}}D_{{t_2}/{{({{t'}_\sigma })}^2}}^\alpha {a^\mu }(\sigma )-B(t(\sigma ), {a^\nu }(t(\sigma )))} \right\}{{t'}_\sigma }{\rm{d}}\sigma \\ \dot = \int_{\sigma 1}^{{\sigma _2}} {{{\bar B}_f}(t(\sigma ), {a^\nu }\left( {t(\sigma )} \right), {{t'}_\sigma }, {}_{{t_1}/{{({{t'}_\sigma })}^2}}^{\rm{R}}D_{{t_2}/{{({{t'}_\sigma })}^2}}^\alpha {a^\nu }(\sigma )){\rm{d}}\sigma } \\ = \int_{t1}^{{t_2}} {\left\{ {\sum\limits_{\mu = 1}^{2n} {{R_\mu }(t, \;{a^\nu }){}_{{t_1}}^{\rm{R}}D_{{t_2}}^\alpha {a^\mu }}-B(t, \;{a^\nu })} \right\}} \;{\rm{d}}t\\ = S({a^\mu }( \cdot ))。 \end{array} $ (40)

如果分数阶Pfaff作用量(12)在定义3意义下是不变的, 那么分数阶Pfaff作用量(38)在定义1意义下不变。由定理2可以得到

$ \begin{array}{l} {I_f}(t(\sigma ), {a^\nu }(t(\sigma )), \;{{t'}_\sigma }, {}_{{t_1}/{{({{t'}_\sigma })}^2}}^{\rm{R}}D_{{t_2}/{{({{t'}_\sigma })}^2}}^\alpha {a^\nu }(\sigma ))\\ = \sum\limits_{\mu = 1}^{2n} {\frac{{\partial {{\bar B}_f}}}{{\partial {}_{{t_1}/{{({{t'}_\sigma })}^2}}^{\rm{R}}D_{{t_2}/{{({{t'}_\sigma })}^2}}^\alpha {a^\nu }(\sigma )}}{\xi _\mu }} + \frac{{\partial {{\bar B}_f}}}{{\partial {{t'}_\sigma }}}\zeta, \end{array} $ (41)

式(41)是系统的分数阶守恒量。当λ=0时, 有

$ {}_{{t_1}/{{({{t'}_\sigma })}^2}}^{\rm{R}}D_{{t_2}/{{({{t'}_\sigma })}^2}}^\alpha {a^\mu }(\sigma ) = {}_{{t_1}}^{\rm{R}}D_{{t_2}}^\alpha {a^\mu }(t), $ (42)

因此, 可以得到

$ \frac{{\partial {{\bar B}_f}}}{{\partial {}_{{t_1}/{{({{t'}_\sigma })}^2}}^{\rm{R}}D_{{t_2}/{{({{t'}_\sigma })}^2}}^\alpha {a^\nu }(\sigma )}} = {R_\mu }(t, {a^\nu }(t)) $ (43)

以及

$ \begin{array}{l} \frac{{\partial {{\bar B}_f}}}{{\partial {{t'}_\sigma }}} = \frac{\partial }{{\partial {{t'}_\sigma }}}\left[{\sum\limits_{\mu = 1}^{2n} {{R_\mu }(t(\sigma ), {a^\nu }(t(\sigma )))\frac{{{{({{t'}_\sigma })}^{-\alpha }}}}{{2\Gamma (m-\alpha )}}{{\left( {\frac{{\rm{d}}}{{{\rm{d}}t}}} \right)}^m}} } \right. \cdot \\ \left. {\int_{\frac{{{t_1}}}{{{{({{t'}_\sigma })}^2}}}}^{\frac{{{t_2}}}{{{{({{t'}_\sigma })}^2}}}} {|\sigma-s{|^{m - \alpha - 1}}{a^\mu }(s)} \;{\rm{d}}s} \right]{{t'}_\sigma } + \\ \sum\limits_{\mu = 1}^{2n} {{R_\mu }(t(\sigma ), {a^\nu }(t(\sigma ))){{({{t'}_\sigma })}^{ - \alpha }}} \cdot \\ {}_{{t_1}/{{({{t'}_\sigma })}^2}}^{\rm{R}}D_{{t_2}/{{({{t'}_\sigma })}^2}}^\alpha {a^\mu }(\sigma ) - B(t(\sigma ), {a^\nu }(t(\sigma )))\\ = \left[{-\sum\limits_{\mu = 1}^{2n} {{R_\mu }(t(\sigma ), {a^\nu }(t(\sigma )))\frac{{\alpha {{({{t'}_\sigma })}^{-\alpha-1}}}}{{2\Gamma (m - \alpha )}}{{\left( {\frac{{\rm{d}}}{{{\rm{d}}t}}} \right)}^m}} } \right. \cdot \\ \left. {\int_{\frac{{{t_1}}}{{{{({{t'}_\sigma })}^2}}}}^{\frac{{{t_2}}}{{{{({{t'}_\sigma })}^2}}}} {{{\left| {\sigma - s} \right|}^{m - \alpha - 1}}{a^\mu }(s)\;{\rm{d}}s} } \right]{{t'}_\sigma } + \\ \sum\limits_{\mu = 1}^{2n} {{R_\mu }(t, {a^\nu }(t)){}_{{t_1}}^{\rm{R}}D_{{t_2}}^\alpha {a^\mu }(t)} -B(t, {a^\nu }(t))\\ = -\alpha \sum\limits_{\mu = 1}^{2n} {{R_\mu }{}_{{t_1}}^{\rm{R}}D_{{t_2}}^\alpha {a^\mu }} + \sum\limits_{\mu = 1}^{2n} {{R_\mu }{}_{{t_1}}^{\rm{R}}D_{{t_2}}^\alpha {a^\mu }} -B。 \end{array} $ (44)

将式(44)和(43)代入式(41), 得到守恒量式(36)。

定理2和定理3称为Riesz-Riemann-Liouville导数下分数阶Birkhoff系统的分数阶Noether定理。显然, 当α=1时, 定理2和定理3给出经典Birkhoff系统的Noether定理。

3 Riesz-Caputo导数下分数阶Birk-hoff系统的Noether对称性

积分

$ A({a^\mu }( \cdot )) = \int_{{t_1}}^{{t_2}} {\left\{ {\sum\limits_{\nu = 1}^{2n} {{R_\nu }(t, {a^\mu }){}_{{t_1}}^{{\rm{RC}}}D_{{t_2}}^\alpha {a^\nu }}-B(t, {a^\mu })} \right\}} \;{\rm{d}}t $ (45)

称为基于Riesz-Caputo导数的分数阶Pfaff作用量。等时变分原理

$ \delta A = 0 $ (46)

带有交换关系

$ \begin{array}{l} \delta {}_{{t_1}}^{{\rm{RC}}}D_{{t_2}}^\alpha {a^\nu } = {}_{{t_1}}^{{\rm{RC}}}D_{{t_2}}^\alpha \delta {a^\nu }\\ (\nu = 1, \;2, \;\;..., \;2n) \end{array} $ (47)

以及端点条件

$ \begin{array}{l} {\left. {\delta {a^\nu }} \right|_{t = {t_1}}} = {\left. {\delta {a^\nu }} \right|_{t = {t_2}}} = 0\\ (\nu = 1, \;2, \;..., \;2n) \end{array} $ (48)

称为基于Riesz-Caputo导数的分数阶Pfaff-Birkhoff原理。

${\rm{0 < }}\alpha < 1$, 由分数阶Pfaff-Birkhoff原理(46)~(48)容易导出如下方程[38]:

$ \begin{array}{l} \sum\limits_{\nu = 1}^{2n} {\left( {\frac{{\partial {R_\nu }}}{{\partial {a^\mu }}}{}_{{t_1}}^{{\rm{RC}}}D_{{t_2}}^\alpha {a^\nu }} \right)-\frac{{\partial B}}{{\partial {a^\mu }}}-{}_{{t_1}}^{\rm{R}}D_{{t_2}}^\alpha {R_\mu }} = {\rm{0}}\\ {\kern 1pt} {\kern 1pt} (\mu = 1, \;\;2, \;\;..., \;\;2n), \end{array} $ (49)

以及相应的横截性条件

$ \sum\limits_{\nu = 1}^{2n} {\left. {{}_{{t_1}}^{\rm{R}}D_{{t_2}}^{\alpha-1}{R_\nu }\delta {a^\nu }} \right|_{{t_1}}^{{t_2}}} = 0。 $ (50)

由端点条件(48)易知横截性条件(50)恒成立。方程(49)称为Riesz-Caputo导数下分数阶Birkhoff系统的分数阶Birkhoff方程。

$\alpha \to 1$时, 方程(49)成为经典的Birkhoff方程(18)。因此, 经典Birkhoff方程是Riesz-Caputo导数下的分数阶Birkhoff方程(49)的特例。

下面定义Riesz-Caputo导数下的分数阶Birk-hoff方程(49)在无限小变换(19)下的Noether对称性, 并给出相应的分数阶守恒量。

定义4 如果分数阶Pfaff作用量(45)在无限小变换(19)作用下, 对于任意的子区间$\left[{{T_1}, \; {T_2}} \right] \subseteq ({t_1}, \; {t_2})$, 始终成立

$ \begin{array}{l} \int_{T1}^{{T_2}} {\left\{ {\sum\limits_{\mu = 1}^{2n} {{R_\mu }(t, {a^\nu }){}_{{t_1}}^{{\rm{RC}}}D_{{t_2}}^\alpha {a^\mu }}-B(t, {a^\nu })} \right\}} \;{\rm{d}}t\\ = \int_{{T_1}}^{{T_2}} {\left\{ {\sum\limits_{\mu = 1}^{2n} {{R_\mu }(t, {{\bar a}^\nu }){}_{{t_1}}^{{\rm{RC}}}D_{{t_2}}^\alpha {{\bar a}^\mu }}-B(t, {{\bar a}^\nu })} \right\}} \;{\rm{d}}t, \end{array} $ (51)

则称这种不变性为Riesz-Caputo导数下的分数阶Birkhoff系统(49)在时间不变的无限小变换下的Noether对称性。

定理4 对于Riesz-Caputo导数下的分数阶Birkhoff方程(49), 如果时间不变的无限小变换(19)相应于定义4意义下的Noether对称性, 那么

$ \begin{array}{l} \sum\limits_{\mu = 1}^{2n} {\left( {\sum\limits_{\nu = 1}^{2n} {\frac{{\partial {R_\mu }(t, {a^\nu })}}{{\partial {a^\nu }}}{\xi _\nu }(t, {a^\mu })} } \right){}_{{t_1}}^{{\rm{RC}}}D_{{t_2}}^\alpha {a^\mu }} + \\ \sum\limits_{\mu = 1}^{2n} {{R_\mu }(t, {a^\nu }){}_{{t_1}}^{{\rm{RC}}}D_{{t_2}}^\alpha {\xi _\mu }(t, {a^\nu })}-\\ \sum\limits_{\nu = 1}^{2n} {\frac{{\partial B\left( {t, {a^\nu }} \right)}}{{\partial {a^\nu }}}{\xi _\nu }(t, {a^\mu })} = 0 \end{array} $ (52)

成立。

证明 由积分区间[T1, T2]的任意性, 通过式(51)可得

$ \begin{array}{l} \sum\limits_{\mu = 1}^{2n} {{R_\mu }(t, {a^\nu }){}_{{t_1}}^{{\rm{RC}}}D_{{t_2}}^\alpha {a^\mu }}-B(t, {a^\nu })\\ = \sum\limits_{\mu = 1}^{2n} {{R_\mu }(t, {{\bar a}^\nu }){}_{{t_1}}^{{\rm{RC}}}D_{{t_2}}^\alpha {{\bar a}^\mu }}-B(t, {{\bar a}^\nu }), \end{array} $ (53)

将式(53)两边对ε求导, 然后令ε=0, 有

$ \begin{array}{l} 0 = \sum\limits_{\mu = 1}^{2n} {\left( {\sum\limits_{\nu = 1}^{2n} {\frac{{\partial {R_\mu }(t, {a^\nu })}}{{\partial {a^\nu }}}{\xi _\nu }(t, {a^\mu })} } \right){}_{{t_1}}^{{\rm{RC}}}D_{{t_2}}^\alpha {a^\mu }} + \sum\limits_{\mu = 1}^{2n} {{R_\mu }(t, {a^\nu }) \cdot } \\ \frac{{\rm{d}}}{{{\rm{d}}\varepsilon }}\left[{\frac{1}{{2\Gamma (m- \alpha )}}\int_{{t_1}}^{{t_2}} {{{\left| {t- \tau } \right|}^{m- \alpha - 1}}\frac{{{{\rm{d}}^m}}}{{{\rm{d}}{\tau ^m}}}\left[{{a^\mu }(\tau )} \right]} \;{\rm{d}}\tau } \right. + \\ {\left. {\left. {\frac{\varepsilon }{{2\Gamma (m - \alpha )}}\int_{{t_1}}^{{t_2}} {{{\left| {t - \tau } \right|}^{m - \alpha - 1}}\frac{{{{\rm{d}}^m}}}{{{\rm{d}}{\tau ^m}}}\left[{{\xi _\mu }(\tau, {a^\nu })} \right]} \;\;{\rm{d}}\tau } \right]} \right|_{\varepsilon = 0}} - \\ \sum\limits_{\nu = 1}^{2n} {\frac{{\partial B(t, {a^\nu })}}{{\partial {a^\nu }}}{\xi _\nu }(t, {a^\mu })} \\ = \sum\limits_{\mu = 1}^{2n} {\left( {\sum\limits_{\nu = 1}^{2n} {\frac{{\partial {R_\mu }(t, {a^\nu })}}{{\partial {a^\nu }}}{\xi _\nu }(t, {a^\mu })} } \right){}_{{t_1}}^{{\rm{RC}}}D_{{t_2}}^\alpha {a^\mu }} + \\ \sum\limits_{\mu = 1}^{2n} {{R_\mu }(t, {a^\nu })} \cdot \frac{1}{{2\Gamma (m - \alpha )}} \cdot \\ \int_{{t_1}}^{{t_2}} {{{\left| {t - \tau } \right|}^{m - \alpha - 1}}\frac{{{{\rm{d}}^m}}}{{{\rm{d}}{\tau ^m}}}[{\xi _\mu }(\tau, {a^\nu })]} \;{\rm{d}}\tau -\\ \sum\limits_{\nu = 1}^{2n} {\frac{{\partial B(t, {a^\nu })}}{{\partial {a^\nu }}}{\xi _\nu }(t, {a^\mu })}, \end{array} $ (54)

显然, 式(54)即为式(52)。

下面引入Riesz-Caputo导数下的分数阶守恒量的概念[25]

定义5 $I (t, {a^\nu }, {}_{{t_1}}^{{\rm{RC}}}D_{{t_2}}^\alpha {a^\nu })$是分数阶守恒量当且仅当沿着分数阶Birkhoff方程(49)的解曲线, 有

$ = \sum\limits_{i = 1}^r {I_i^1(t, {a^\nu }, {}_{{t_1}}^{{\rm{RC}}}D_{{t_2}}^\alpha {a^\nu }) \cdot } I_i^2(t, {a^\nu }, {}_{{t_1}}^{{\rm{RC}}}D_{{t_2}}^\alpha {a^\nu }) $ (55)

其中r是任意整数, 对于每一组函数Ii1Ii2(i=1, 2, …, r), 满足

$ {}^{{\rm{RC}}}D_t^\alpha (I_i^1(t, {a^\nu }, {}_{{t_1}}^{{\rm{RC}}}D_{{t_2}}^\alpha {a^\nu }), I_i^2(t, {a^\nu }, {}_{{t_1}}^{{\rm{RC}}}D_{{t_2}}^\alpha {a^\nu })) = 0 $ (56)

$ {}^{{\rm{RC}}}D_t^\alpha (I_i^2(t, {a^\nu }, {}_{{t_1}}^{{\rm{RC}}}D_{{t_2}}^\alpha {a^\nu }), \;I_i^1(t, {a^\nu }, {}_{{t_1}}^{{\rm{RC}}}D_{{t_2}}^\alpha {a^\nu })) = 0, $ (57)

其中, 算子${}^{{\rm{RC}}}D_t^\alpha (f, g)$定义[25]

$ {}^{{\rm{RC}}}D_t^\alpha (f, g) = g{}_{{t_1}}^{\rm{R}}D_{{t_2}}^\alpha f + f{}_{{t_1}}^{{\rm{RC}}}D_{{t_2}}^\alpha g。 $ (58)

α=1时, 式(58)给出

$ {}^{{\rm{RC}}}D_t^1(f, g) = g{}_{{t_1}}^{\rm{R}}D_{{t_2}}^1f + f{}_{{t_1}}^{{\rm{RC}}}D_{{t_2}}^1g = \dot fg + f\dot g = \frac{{\rm{d}}}{{{\rm{d}}t}}(fg) $ (59)

此时, ${}^{{\rm{RC}}}D_t^1(f, g)={}^{{\rm{RC}}}D_t^1(g, f)$但是一般情况下, ${}^{{\rm{RC}}}D_t^\alpha (f, g) \ne {}^{{\rm{RC}}}D_t^\alpha (g, f)$

定理5 对于Riesz-Caputo导数下的分数阶Birkhoff系统(49), 如果时间不变的无限小变换(19)相应于定义4意义下的Noether对称性, 则

$ I(t, {a^\nu }, {}_{{t_1}}^{{\rm{RC}}}D_{{t_2}}^\alpha {a^\nu }) = \sum\limits_{\mu = 1}^{2n} {{R_\mu }(t, {a^\nu }){\xi _\mu }(t, {a^\nu })} $ (60)

是系统的分数阶守恒量。

证明 由分数阶Birkhoff方程(49)可得

$ \frac{{\partial B}}{{\partial {a^\mu }}} = \sum\limits_{\nu = 1}^{2n} {\left( {\frac{{\partial {R_\nu }}}{{\partial {a^\mu }}}{}_{{t_1}}^{{\rm{RC}}}D_{{t_2}}^\alpha {a^\nu }} \right)}-{}_{{t_1}}^{\rm{R}}D_{{t_2}}^\alpha {R_\mu }, $ (61)

由于时间不变的无限小变换(19)相应于定义4意义下的Noether对称性, 故将式(61)代入式(52), 得

$ \begin{array}{l} \sum\limits_{\mu = 1}^{2n} {\left( {\sum\limits_{\nu = 1}^{2n} {\frac{{\partial {R_\mu }}}{{\partial {a^\nu }}}{\xi _\nu }} } \right){}_{{t_1}}^{{\rm{RC}}}D_{{t_2}}^\alpha {a^\mu }} + \sum\limits_{\mu = 1}^{2n} {{R_\mu }{}_{{t_1}}^{{\rm{RC}}}D_{{t_2}}^\alpha {\xi _\mu }}-\\ \sum\limits_{\mu = 1}^{2n} {\sum\limits_{\nu = 1}^{2n} {\left( {\frac{{\partial {R_\nu }}}{{\partial {a^\mu }}}{}_{{t_1}}^{{\rm{RC}}}D_{{t_2}}^\alpha {a^\nu }} \right)} } \;{\xi _\mu } + \sum\limits_{\mu = 1}^{2n} {{\xi _\mu }{}_{{t_1}}^{\rm{R}}D_{{t_2}}^\alpha {R_\mu }} = 0, \end{array} $ (62)

化简得

$ \sum\limits_{\mu = 1}^{2n} {{R_\mu }{}_{{t_1}}^{{\rm{RC}}}D_{{t_2}}^\alpha {\xi _\mu }} + \sum\limits_{\mu = 1}^{2n} {{\xi _\mu }{}_{{t_1}}^{\rm{R}}D_{{t_2}}^\alpha {R_\mu }} = 0, $ (63)

$ \sum\limits_{\mu = 1}^{2n} {\{ {}^{{\rm{RC}}}D_t^\alpha ({R_\mu }, \;{\xi _\mu })\} } = 0。 $ (64)

由定义5可知, 式(60)是所论分数阶Birkhoff系统(49)的分数阶守恒量。

下面, 定义Riesz-Caputo导数下的分数阶Birk-hoff方程(49)在时间变化的无限小变换(34)下的Noether对称性, 并给出相应的分数阶守恒量。

定义6 如果分数阶Pfaff作用量(45)在无限小变换(34)作用下, 对于任意子区间$[{T_1}, \; {T_2}] \subseteq ({t_1}, \; {t_2})$,

$ \begin{array}{l} \int_{{T_1}}^{{T_2}} {\left\{ {\sum\limits_{\mu = 1}^{2n} {{R_\mu }(t, \;{a^\nu }){}_{{t_1}}^{{\rm{RC}}}D_{{t_2}}^\alpha {a^\mu }}-B(t, \;{a^\nu })} \right\}} \;{\rm{d}}t\\ = \int_{{{\bar T}_1}}^{{{\bar T}_2}} {\left\{ {\sum\limits_{\mu = 1}^{2n} {{R_\mu }(\bar t, \;{{\bar a}^\nu }){}_{{{\bar t}_1}}^{{\rm{RC}}}D_{{{\bar t}_2}}^\alpha {{\bar a}^\mu }}-B(\bar t, \;{{\bar a}^\nu })} \right\}} \;{\rm{d}}\bar t \end{array} $ (65)

成立, 则称这种不变性为Riesz-Caputo导数下的分数阶Birkhoff系统(49)在时间变化的无限小变换(34)下的Noether对称性。

定理6 对于Riesz-Caputo导数下的分数阶Birkhoff系统(49), 如果时间变化的无限小变换(34)相应于定义6意义下的Noether对称性, 则

$ \begin{array}{l} I(t, {a^\nu }, {}_{{t_1}}^{{\rm{RC}}}D_{{t_2}}^\alpha {a^\nu })\\ = \sum\limits_{\mu = 1}^{2n} {{R_\mu }{\xi _\mu }} + \left[{(1-\alpha )\sum\limits_{\mu = 1}^{2n} {{R_\mu }{}_{{t_1}}^{{\rm{RC}}}D_{{t_2}}^\alpha {a^\mu }}-B} \right]\zeta \end{array} $ (66)

是系统的分数阶守恒量。

证明 取关于时间t(t是独立变量)的李普希兹变换

$ t \in [{t_1}, \;{t_2}] \mapsto \sigma f(\lambda ) \in [{\sigma _1}, \;{\sigma _2}], $ (67)

$\lambda=0$时, 满足

$ {t'_\sigma } = \frac{{{\rm{d}}t(\sigma )}}{{{\rm{d}}\sigma }} = f(\lambda ) = 1。 $

在变换(67)作用下, 分数阶Pfaff作用量(45)成为

$ \begin{array}{l} \bar A(t( \cdot ), {a^\mu }( \cdot ))\\ = \int_{{\sigma _1}}^{{\sigma _2}} {\left\{ {\sum\limits_{\mu = 1}^{2n} {{R_\mu }(t(\sigma ), \;{a^\nu }(t(\sigma ))){}_{{\sigma _1}}^{{\rm{RC}}}D_{{\sigma _2}}^\alpha {a^\mu }(t(\sigma ))-} } \right.} \\ \left. {B(t(\sigma ), \;{a^\nu }(t(\sigma )))} \right\}{{t'}_\sigma }{\rm{d}}\sigma, \end{array} $ (68)

其中, $t ({\sigma _1})={t_1}$, $t ({\sigma _2})={t_2}$,

$ \begin{array}{l} {}_{{\sigma _1}}^{{\rm{RC}}}D_{{\sigma _2}}^\alpha {a^\mu }(t(\sigma ))\\ = \frac{1}{{2\Gamma (m- \alpha )}} \cdot \\ \int_{\frac{{{t_1}}}{{f(\lambda )}}}^{\frac{{{t_2}}}{{f(\lambda )}}} {{{\left| {\sigma f(\lambda )- \tau } \right|}^{m- \alpha - 1}}\frac{{{{\rm{d}}^m}}}{{{\rm{d}}{\tau ^m}}}[{a^\mu }(\tau {f^{-1}}(\lambda ))]} \;{\rm{d}}\tau \\ = \frac{{{{({{t'}_\sigma })}^{ - \alpha }}}}{{2\Gamma (m - \alpha )}}\int_{\frac{{{t_1}}}{{{{({{t'}_\sigma })}^2}}}}^{\frac{{{t_2}}}{{{{({{t'}_\sigma })}^2}}}} {|\sigma - s{|^{m - \alpha - 1}}\frac{{{{\rm{d}}^m}}}{{{\rm{d}}{s^m}}}[{a^\mu }(s)]} \;{\rm{d}}s\\ = {({{t'}_\sigma })^{ -\alpha }}{}_{{t_1}/{{({{t'}_\sigma })}^2}}^{{\rm{RC}}}D_{{t_2}/{{({{t'}_\sigma })}^2}}^\alpha {a^\mu }(\sigma ) \end{array} $ (69)

将式(69)代入式(68), 得

$ \begin{array}{l} \bar A(t( \cdot ), {a^\mu }( \cdot ))\\ = \int_{{\sigma _1}}^{{\sigma _2}} {\left\{ {\sum\limits_{\mu = 1}^{2n} {{R_\mu }(t(\sigma ){a^\nu }(t(\sigma ))){{({{t'}_\sigma })}^{-\alpha }}} } \right.} \cdot \\ \left. {{}_{{t_1}/{{({{t'}_\sigma })}^2}}^{{\rm{RC}}}D_{{t_2}/{{({{t'}_\sigma })}^2}}^\alpha {a^\mu }(\sigma )-B(t(\sigma ), {a^\nu }(t(\sigma )))} \right\}{{t'}_\sigma }{\rm{d}}\sigma \\ \dot = \int_{{\sigma _1}}^{{\sigma _2}} {{{\bar B}_f}(t(\sigma ), {a^\nu }(t(\sigma )), {{t'}_\sigma }, {}_{{t_1}/{{({{t'}_\sigma })}^2}}^{{\rm{RC}}}D_{{t_2}/{{({{t'}_\sigma })}^2}}^\alpha {a^\nu }(\sigma ))} \;{\rm{d}}\sigma \\ = \int_{{t_1}}^{{t_2}} {\left\{ {\sum\limits_{\mu = 1}^{2n} {{R_\mu }(t, \;{a^\nu }){}_{{t_1}}^{{\rm{RC}}}D_{{t_2}}^\alpha {a^\mu }}-B(t, \;{a^\nu })} \right\}} \;{\rm{d}}t\\ = A({a^\mu }( \cdot ))。 \end{array} $ (70)

如果分数阶Pfaff作用量(45)在定义6意义下是不变的, 那么分数阶Pfaff作用量(68)在定义4意义下不变。由定理5可以得到

$ \begin{array}{l} {I_f}(t(\sigma ), {a^\nu }(t(\sigma )), \;{{t'}_\sigma }, {}_{{t_1}/{{({{t'}_\sigma })}^2}}^{{\rm{RC}}}D_{{t_2}/{{({{t'}_\sigma })}^2}}^\alpha {a^\nu }(\sigma ))\\ = \sum\limits_{\mu = 1}^{2n} {\frac{{\partial {{\bar B}_f}}}{{\partial {}_{{t_1}/{{({{t'}_\sigma })}^2}}^{{\rm{RC}}}D_{{t_2}/{{({{t'}_\sigma })}^2}}^\alpha {a^\nu }(\sigma )}}{\xi _\mu }} + \frac{{\partial {{\bar B}_f}}}{{\partial {{t'}_\sigma }}}\zeta, \end{array} $ (71)

式(71)是系统(49)的分数阶守恒量。当$\lambda=0$时, 有

$ {}_{{t_1}/{{({{t'}_\sigma })}^2}}^{{\rm{RC}}}D_{{t_2}/{{({{t'}_\sigma })}^2}}^\alpha {a^\mu }(\sigma ) = {}_{{t_1}}^{{\rm{RC}}}D_{{t_2}}^\alpha {a^\mu }(t), $ (72)

因此, 可以得到

$ \frac{{\partial {{\bar B}_f}}}{{\partial {}_{{t_1}/{{({{t'}_\sigma })}^2}}^{{\rm{RC}}}D_{{t_2}/{{({{t'}_\sigma })}^2}}^\alpha {a^\nu }(\sigma )}} = {R_\mu }(t, {a^\nu }(t)) $ (73)

以及

$ \begin{array}{l} \frac{{\partial {{\bar B}_f}}}{{\partial {{t'}_\sigma }}} = \frac{\partial }{{\partial {{t'}_\sigma }}}\left[{\sum\limits_{\mu = 1}^{2n} {{R_\mu }(t(\sigma ), {a^\nu }(t(\sigma )))\frac{{{{({{t'}_\sigma })}^{-\alpha }}}}{{2\Gamma (m-\alpha )}}} } \right. \cdot \\ \int_{\frac{{{t_1}}}{{{{({{t'}_\sigma })}^2}}}}^{\frac{{{t_2}}}{{{{({{t'}_\sigma })}^2}}}} {{{\left| {\sigma-s} \right|}^{m - \alpha - 1}}} \;\left. {\frac{{{{\rm{d}}^m}}}{{{\rm{d}}{s^m}}}{a^\mu }(s){\rm{d}}s} \right]{{t'}_\sigma } + \\ \sum\limits_{\mu = 1}^{2n} {{R_\mu }(t(\sigma ), {a^\nu }(t(\sigma ))){{({{t'}_\sigma })}^{ - \alpha }}} \cdot \\ {}_{{t_1}/{{({{t'}_\sigma })}^2}}^{{\rm{RC}}}D_{{t_2}/{{({{t'}_\sigma })}^2}}^\alpha {a^\mu }(\sigma ) - B(t(\sigma ), {a^\nu }(t(\sigma )))\\ = \left[{-\sum\limits_{\mu = 1}^{2n} {{R_\mu }(t(\sigma ), {a^\nu }(t(\sigma )))\frac{{\alpha {{({{t'}_\sigma })}^{-\alpha-1}}}}{{2\Gamma (m - \alpha )}}} } \right. \cdot \\ \left. {\int_{\frac{{{t_1}}}{{{{({{t'}_\sigma })}^2}}}}^{\frac{{{t_2}}}{{{{({{t'}_\sigma })}^2}}}} {{{\left| {\sigma - s} \right|}^{m - \alpha - 1}}\frac{{{{\rm{d}}^m}}}{{{\rm{d}}{s^m}}}{a^\mu }(s)} \;{\rm{d}}s} \right]{{t'}_\sigma } + \\ \sum\limits_{\mu = 1}^{2n} {{R_\mu }(t, {a^\nu }(t)){}_{{t_1}}^{{\rm{RC}}}D_{{t_2}}^\alpha {a^\mu }(t)} -B(t, {a^\nu }(t))\\ = -\alpha \sum\limits_{\mu = 1}^{2n} {{R_\mu }{}_{{t_1}}^{{\rm{RC}}}D_{{t_2}}^\alpha {a^\mu }} + \sum\limits_{\mu = 1}^{2n} {{R_\mu }{}_{{t_1}}^{{\rm{RC}}}D_{{t_2}}^\alpha {a^\mu }} -B。 \end{array} $ (74)

将式(74)和(73)代入式(71), 得到守恒量式(66)。

4 算例

例1 已知四阶分数阶Birkhoff系统在Riesz-Riemann-Liouville导数下的Pfaff作用量为

$ \begin{array}{l} S({a^\mu }( \cdot )) = \int_{{t_1}}^{{t_2}} {\left\{ {{a^2}{}_{{t_1}}^{\rm{R}}D_{{t_2}}^\alpha {a^1} + {a^{\rm{4}}}{}_{{t_1}}^{\rm{R}}D_{{t_2}}^\alpha {a^3}-} \right.} \\ \left. {\frac{1}{2}({{({a^4})}^2}-2{a^2}{a^3})} \right\}{\rm{d}}t, \end{array} $ (75)

试研究该系统的分数阶Noether对称性与分数阶守恒量。

从作用量(75)可知, 系统的Birkhoff函数和Birkhoff函数组为

$ \left\{ \begin{array}{l} B = \frac{1}{2}({({a^4})^2}-2{a^2}{a^3}), \\ {R_1} = {a^2}, \\ {R_2} = 0, \\ {R_3} = {a^4}, \\ {R_4} = 0, \end{array} \right. $ (76)

取无限小变换(34)的生成元为

$ \left\{ \begin{array}{l} \zeta = \frac{2}{3}t, \;\\ {\xi _1} = {a^1}, \;\\ {\xi _2} =-{a^2}, \;\\ {\xi _3} = \frac{1}{3}{a^3}, \;\\ {\xi _4} =-\frac{1}{3}{a^4}, \end{array} \right. $ (77)

由定义3, 生成元(77)对应于系统的Noether对称性。根据定理3, 得到

$ \begin{array}{l} I = {a^1}{a^2} + \frac{1}{3}{a^3}{a^4} + \frac{2}{3}t\left[{(1-\alpha ){a^2}{}_{{t_1}}^{\rm{R}}D_{{t_2}}^\alpha {a^1} + } \right.\\ \left. {(1-\alpha ){a^4}{}_{{t_1}}^{\rm{R}}D_{{t_2}}^\alpha {a^3}-\frac{1}{2}({{({a^4})}^2} - 2{a^2}{a^3})} \right], \end{array} $ (78)

式(78)是该系统的一个分数阶守恒量。

例2 已知四阶分数阶Birkhoff系统在Riesz-Caputo导数下的分数阶Pfaff作用量为

$ \begin{array}{l} A({a^\mu }( \cdot )) = \int_{{t_1}}^{{t_2}} {\left\{ {{a^3}{}_{{t_1}}^{{\rm{RC}}}D_{{t_2}}^\alpha {a^1} + {a^4}{}_{{t_1}}^{{\rm{RC}}}D_{{t_2}}^\alpha {a^2}- } \right.} \\ \left. {\frac{1}{2}[{{({a^3})}^2} + {{({a^4})}^2}]} \right\}{\rm{d}}t, \end{array} $ (79)

试研究该系统的分数阶Noether对称性与分数阶守恒量。

如取生成元为

$ \left\{ \begin{array}{l} \zeta = 0, {\kern 1pt} {\kern 1pt} \\ {\xi _1} = 1, {\kern 1pt} {\kern 1pt} \\ {\xi _2} = 0, {\kern 1pt} {\kern 1pt} \\ {\xi _3} = 0, {\kern 1pt} {\kern 1pt} \\ {\xi _4} = 0, \end{array} \right. $ (80)

由定义4, 生成元(80)相应于分数阶Birkhoff系统(79)的Noether对称性。因此, 由定理5得到

$ I = {a^3}, $ (81)

式(81)是该分数阶Birkhoff系统的一个守恒量。

5 结论

Birkhoff力学是Hamilton力学的推广, 对Birk-hoff力学的研究是近代分析力学的一个重要发展方向。由于应用分数阶模型可以更准确地描述复杂系统的动力学行为, 因此对分数阶Birkhoff系统动力学的研究具有重要意义。本文提出并研究了分数阶Birkhoff系统在Riesz-Riemann-Liouville分数阶导数和Riesz-Caputo分数阶导数下的Noether对称性与守恒量问题, 建立了分数阶Noether定理。定理的证明分成两步:首先在时间不变的无限小变换下给出证明; 然后利用时间重新参数化技术, 得到一般情况下的分数阶Noether定理。分数阶Noether定理揭示了分数阶Noether对称性与分数阶守恒量之间的内在联系。由于求解Riemann-Liouville导数下的分数阶微分方程与求解Caputo导数下的分数阶微分方程所伴随的初始条件的形式不同, 后者仅涉及整数阶导数的初始条件, 因此, Riesz-Caputo导数下的结果更易于应用。当然, 两者都以经典Birkhoff系统的Noether定理作为其特例。因此, 本文研究的方法和结果具有普遍意义。

参考文献
[1] Noether A E. Nach-richten von der Gesellschaft der Wissenschaften zu G ttingen. Mathematisch-Physikalische Klasse , 1918, KI (Ⅱ) : 235–257 .
[2] Djukić D D S, Vujanović B D. Noether's theory in classical nonconservative mechanics. Acta Mecha-nica , 1975, 23 (1/2) : 17–27 .
[3] 李子平. 约束系统的变换性质. 物理学报 , 1981, 30 (12) : 1659–1671.
[4] Bahar L Y, Kwatny H G. Extension of Noether's theorem to constrained nonconservative dynamical systems. International Journal of Non-Linear Mecha-nics , 1987, 22 (2) : 125–138 DOI:10.1016/0020-7462(87)90015-1 .
[5] Liu D. Noether's theorem and its inverse of nonholonomic nonconservative dynamical systems. Science in China: Ser A , 1991, 34 (4) : 419–429 .
[6] 梅凤翔. 李群和李代数对约束力学系统的应用. 北京: 科学出版社, 1999 .
[7] Xia L L, Chen L Q. Noether conserved quantities and Lie point symmetries for difference nonholonomic Hamiltonian systems in irregular lattices. Chinese Physics B , 2012, 21 (7) : 070202 DOI:10.1088/1674-1056/21/7/070202 .
[8] Wang P, Xue Y, Liu Y L. Noether symmetry and conserved quantities of the analytical dynamics of a Cosserat thin elastic rod. Chinese Physics B , 2013, 22 (10) : 104503 DOI:10.1088/1674-1056/22/10/104503 .
[9] Cai P P, Fu J L, Guo Y X. Noether symmetries of the nonconservative and nonholonomic systems on time scales. Science China: Physics, Mechanics & Astronomy , 2013, 56 (5) : 1017–1028 .
[10] Zhai X H, Zhang Y. Noether symmetries and con-served quantities for Birkhoffian systems with time delay. Nonlinear Dynamics , 2014, 77 (1/2) : 73–86 .
[11] Oldham K B, Spanier J. The Fractional Calculus. San Diego: Academic Press, 1974 .
[12] Riewe F. Nonconservative Lagrangian and Hamil-tonian mechanics. Physical Review E , 1996, 53 (2) : 1890–1899 DOI:10.1103/PhysRevE.53.1890 .
[13] Riewe F. Mechanics with fractional derivatives. Physical Review E , 1997, 55 (3) : 3581–3592 DOI:10.1103/PhysRevE.55.3581 .
[14] Agrawal O P. Formulation of Euler-Lagrange equa-tions for fractional variational problems. Journal of Mathematical Analysis and Applications , 2002, 272 (1) : 368–379 DOI:10.1016/S0022-247X(02)00180-4 .
[15] Agrawal O P. Fractional variational calculus in terms of Riesz fractional derivatives. Journal of Physics A: Mathematical and Theoretical , 2007, 40 (24) : 6287–6303 DOI:10.1088/1751-8113/40/24/003 .
[16] Baleanu D, Avkar T. Lagrangians with linear velo-cities within Riemann-Liouville fractional derivatives. Nuovo Cimento B , 2003, 119 (1) : 73–79 .
[17] Baleanu D, Trujillo J I. A new method of finding the fractional Euler-Lagrange and Hamilton equations within Caputo fractional derivatives. Communications in Nonlinear Science and Numerical Simulation , 2010, 15 (5) : 1111–1115 DOI:10.1016/j.cnsns.2009.05.023 .
[18] Atanacković T M, Konjik S, Pilipović S. Variational problems with fractional derivatives: Euler-Lagrange equations. Journal of Physics A: Mathematical and Theoretical , 2008, 41 (9) : 095201 DOI:10.1088/1751-8113/41/9/095201 .
[19] Atanacković T M, Konjik S, Oparnica L, et al. Generalized Hamilton's principle with fractional derivatives. Journal of Physics A: Mathematical and Theoretical , 2010, 43 (25) : 255203 DOI:10.1088/1751-8113/43/25/255203 .
[20] El-Nabulsi A R. A fractional approach to noncon-servative Lagrangian dynamical systems. Fizika A , 2005, 14 (4) : 289–298 .
[21] El-Nabulsi A R. Fractional variational problems from extended exponentially fractional integral. Applied Mathematics and Computation , 2011, 217 (22) : 9492–9496 DOI:10.1016/j.amc.2011.04.007 .
[22] El-Nabulsi A R, Torres D F M. Non-standard fractional Lagrangians. Nonlinear Dynamics , 2013, 74 (1/2) : 381–394 .
[23] Frederico G S F, Torres D F M. A formulation of Noether's theorem for fractional problems of the calculus of variations. Journal of Mathematical Analysis and Applications , 2007, 334 (2) : 834–846 DOI:10.1016/j.jmaa.2007.01.013 .
[24] Frederico G S F, Torres D F M. Fractional isoperimetric Noether's theorem in the Riemann-Liouville sense. Reports on Mathematical Physics , 2013, 71 (3) : 291–304 DOI:10.1016/S0034-4877(13)60034-8 .
[25] Frederico G S F. Fractional optimal control in the sense of Caputo and the fractional Noether's theorem. International Mathematical Forum , 2008, 3 (10) : 479–493 .
[26] Frederico G S F, Torres D F M. Fractional Noether's theorem in the Riesz-Caputo sense. Applied Mathe-matics and Computation , 2010, 217 (3) : 1023–1033 DOI:10.1016/j.amc.2010.01.100 .
[27] Frederico G S F, Torres D F M. Constants of motion for fractional action-like variational problems. Inter-national Journal of Applied Mathematics , 2006, 19 (1) : 97–104 .
[28] Frederico G S F, Torres D F M. Non-conservative Noether's theorem for fractional action-like problems with intrinsic and observer times. International Journal of Ecological Economics & Statistics , 2007, 9 (F07) : 74–82 .
[29] Odzijewicz T, Malinowska A B, Torres D F M. Noether's theorem for fractional variational problems of variable order. Central European Journal of Physics , 2013, 11 (6) : 691–701 .
[30] Malinowska A B, Torres D F M. Introduction to the Fractional Calculus of Variations. London: Imperial College Press, 2012 .
[31] Zhang S H, Chen B Y, Fu J L. Hamilton formalism and Noether symmetry for mechanico electrical systems with fractional derivatives. Chinese Physics B , 2012, 21 (10) : 100202 DOI:10.1088/1674-1056/21/10/100202 .
[32] Zhang Y, Zhou Y. Symmetries and conserved quan-tities for fractional action-like Pfaffian variational problems. Nonlinear Dynamics , 2013, 73 (1/2) : 783–793 .
[33] Long Z X, Zhang Y. Noether's theorem for fractional variational problem from El-Nabulsi extended expo-nentially fractional integral in phase space. Acta Mechanica , 2014, 225 (1) : 77–90 DOI:10.1007/s00707-013-0956-5 .
[34] Long Z X, Zhang Y. Fractional Noether theorem based on extended exponentially fractional integral. International Journal of Theoretical Physics , 2014, 53 (3) : 841–855 DOI:10.1007/s10773-013-1873-z .
[35] Zhang Y, Zhai X H. Noether symmetries and con-served quantities for fractional Birkhoffian systems. Nonlinear Dynamics , 2015, 81 (1/2) : 469–480 .
[36] Podlubny I. Fractional differential equations. San Diego: Academic Press, 1999 .
[37] Kilbas A A, Srivastava H M, Trujillo J J. Theory and Applications of Fractional Differential Equations. Amsterdam: Elsevier, 2006 .
[38] Zhou Y, Zhang Y. Fractional Pfaff-Birkhoff principle and Birkhoff's equations in terms of Riesz fractional derivatives. Transactions of Nanjing University of Aeronautics and Astronautics , 2014, 31 (1) : 63–69 .