1755年Lagrange的著作《Mecanique Analytique》(分析力学)问世[1](1788年首次正式出版), 力学发展史上出现了与牛顿的矢量力学并驾齐驱的一个力学体系。Lagrange力学体系的特点是用对能量和功的分析代替对力和力矩的分析。1834年Hamilton[2-3]建立了Hamilton原理和正则方程, 进一步发展了分析力学, 从而形成Lagrange体系和Hamilton体系。
如何将经典分析动力学应用于连续介质力学, 一直是各国学者关注的研究课题。
我国1958年出版的第一部分析力学专著《分析动力学》[4], 注意到将分析力学从质点刚体力学扩展到连续介质力学、从离散系统扩展到连续系统的问题。2015年影印的《Classical Mechanics》[5]仍然研究连续体分析动力学。一些学者成功地将Lagrange方程应用于机构动力学分析[6-9]、振动系统[10]、防护工程[11]、电器系统和机电系统[12]等领域, 也有学者研究如何将Lagrange方程应用于非惯性系统[13-15], 以及弹性力学的Lagrange形式、弹性介质的Lagrange动力学和精确Cosserat弹性杆动力学的分析力学方法[16-18]。另有一些学者研究完整系统三阶Lagrange方程、状态空间Lagrange函数和运动方程[19-20]以及关于Birkhoff方程和Lagrange方程分析力学问题[21]。
在一定的意义上, Lagrange方程和Hamilton原理都涉及变分学, 而Lagrange作为变分学的奠基人之一, 研究的就是基于变分学的基本理论, 所以借鉴变分学或许是一条可行的途径。Liang等[22]提出变分的逆运算变积概念, 建立变积方法, 然后应用变积方法, 建立一般力学三类变量的广义变分原理[23]。刘高联先生充分肯定了变积方法的首创性[24]。以上研究使微积分学中的积分、微分和导数在变分学中有了对应的概念--变积、变分和变导, 初步地将变分学扩充为变积分学。
本文基于陈滨[25]关于Lagrange力学完整的叙述, 应用变导的概念和运算法则, 研究Lagrange方程中求导的性质, 逐步将Lagrange方程应用于线性弹性动力学, 进而应用于非线性弹性动力学, 并且给出相关的算例, 对理论研究进行验证。
1 Lagrange方程中的导数的性质
首先, 明确变导的概念。设有定积分形式的泛函为
$
V = \int_a^b {F(x,y,y'){\rm{d}}x},
$
|
(1) |
边界条件为
$
{y_{x = a}} = \alpha ,\quad {y_{x = b}} = \beta ,
$
|
(2) |
其中, $y (x)$为自变函数, $x$为自变量。
对式(1)进行变分运算可得
$
{\rm{\delta }}V = \int_a^b {\left( {\frac{{\partial F}}{{\partial y}}{\rm{\delta }}y + \frac{{\partial F}}{{\partial y'}}{\rm{\delta }}y'} \right)} \;{\rm{d}}x。
$
|
(3) |
应用分部积分:
$
\int_a^b {\frac{{\partial F}}{{\partial y'}}{\rm{\delta }}y'} {\rm{d}}x = \frac{{\partial F}}{{\partial y'}}\left. {{\rm{\delta }}y} \right|_a^b - \int_a^b {\frac{{\rm{d}}}{{{\rm{d}}x}}\frac{{\partial F}}{{\partial y'}}{\rm{\delta }}y} {\rm{d}}x。
$
|
(4) |
将式(4)代入式(3), 考虑到边界条件(式(2)), 整理得
$
{\rm{\delta }}V = \int_a^b {\left( {\frac{{\partial F}}{{\partial y}} - \frac{{\rm{d}}}{{{\rm{d}}x}}\frac{{\partial F}}{{\partial y'}}} \right)\;} {\rm{\delta }}y{\rm{d}}x。
$
|
(5) |
由于${\rm{\delta }}y$的任意性, 式(5)可以变换为
$
\frac{{{\rm{\delta }}V}}{{{\rm{\delta }}y}} = \int_a^b {\left( {\frac{{\partial F}}{{\partial y}} - \frac{{\rm{d}}}{{{\rm{d}}x}}\frac{{\partial F}}{{\partial y'}}} \right)} \;{\rm{d}}x。
$
|
(6) |
在微分学中, 函数的微分表示为${\rm{d}}y$, 自变量的微分表示为${\rm{d}}x$, 微商表示为$\frac{{{\rm{d}}y}}{{{\rm{d}}x}}$, 又称导数。在变分学中, 泛函的变分表示为$ {\rm{\delta }}V$, 自变函数的变分表示为${\rm{\delta }}y$, 变商表示为$\frac{{{\rm{\delta }}V}}{{{\rm{\delta }}y}}$, 又称变导。
经典分析动力学中的Lagrange方程表示为
$
\frac{{\rm{d}}}{{{\rm{d}}t}}\frac{{\partial T}}{{\partial \mathit{\boldsymbol{\dot q}}}} - \frac{{\partial T}}{{\partial \mathit{\boldsymbol{q}}}} + \frac{{\partial U}}{{\partial \mathit{\boldsymbol{q}}}} = 0,
$
|
(7) |
其中, $\mathit{\boldsymbol{q}}=\mathit{\boldsymbol{q}}{\rm{(}}t{\rm{)}}$为广义坐标, 一般分析动力学中均将其处理为广义坐标列阵:
$
\begin{array}{l}
{[{q_1}{\rm{(}}t{\rm{)}},\;\;{q_2}{\rm{(}}t{\rm{)}},\;\;{q_3}{\rm{(}}t{\rm{)}},\;\;...,\;\;{q_i}{\rm{(}}t{\rm{)}},\;\;...{q_n}{\rm{(}}t{\rm{)}}]^{\rm{T}}}\;\;\\
\;\;\;\;\;\;\;\;\;\;(i = 1,\;2,\;3,\;...i,\;...,\;n)。
\end{array}
$
|
(8) |
在变分学中, 基本上存在三级变量--自变量、可变函数和泛函。简单函数和泛函的区别在于, 简单函数是自变量的函数, 而泛函是可变函数的函数, 独立自主地变化的可变函数称为自变函数。从不独立的可变函数也是自变函数的函数的角度看问题, 不独立的可变函数也是泛函, 可称其为子泛函。明确变分学中的三级变量, 对区分微积分中的导数和变积分学中的变导很有帮助。对自变量求导为微积分中的导数, 对可变函数的求导则为变积分中的变导。
在Lagrange方程中, 有4个求导运算: $\frac{{\partial T}}{{\partial \mathit{\boldsymbol{\dot q}}}}, $$\frac{{\partial T}}{{\partial \mathit{\boldsymbol{q}}}}, $$\frac{{\partial U}}{{\partial \mathit{\boldsymbol{q}}}}$和$\frac{{\rm{d}}}{{{\rm{d}}t}}\frac{{\partial T}}{{\partial \mathit{\boldsymbol{\dot q}}}}$。一般情况, $\mathit{\boldsymbol{\dot q}}$和$\mathit{\boldsymbol{q}}$均为可变函数, 所以$\frac{{\partial T}}{{\partial \mathit{\boldsymbol{\dot q}}}}$, $\frac{{\partial T}}{{\partial \mathit{\boldsymbol{q}}}}$和$\frac{{\partial U}}{{\partial \mathit{\boldsymbol{q}}}}$均为变积分学中变导; 时间t为自变量, 所以$\frac{{\rm{d}}}{{{\rm{d}}t}}\frac{{\partial T}}{{\partial \mathit{\boldsymbol{\dot q}}}}$中对时间t求导为微积分学中的导数。
严格地说, 变导$\frac{{\partial T}}{{\partial \mathit{\boldsymbol{\dot q}}}}$, $\frac{{\partial T}}{{\partial \mathit{\boldsymbol{q}}}}, $$\frac{{\partial U}}{{\partial \mathit{\boldsymbol{q}}}}$和$\frac{{\rm{d}}}{{{\rm{d}}t}}\frac{{\partial T}}{{\partial \mathit{\boldsymbol{\dot q}}}}$应写为$\frac{{{\rm{ \mathsf{ δ} }}T}}{{{\rm{ \mathsf{ δ} }}\mathit{\boldsymbol{\dot q}}}}$, $\frac{{{\rm{ \mathsf{ δ} }}T}}{{{\rm{ \mathsf{ δ} }}\mathit{\boldsymbol{q}}}}$, $\frac{{{\rm{ \mathsf{ δ} }}U}}{{{\rm{ \mathsf{ δ} }}\mathit{\boldsymbol{q}}}}$和$\frac{{\rm{d}}}{{{\rm{d}}t}}\frac{{{\rm{ \mathsf{ δ} }}T}}{{{\rm{ \mathsf{ δ} }}\mathit{\boldsymbol{\dot q}}}}$。但是, 考虑到目前分析力学界的习惯, 可仍然沿用原来的符号:变分符号用δ, 变导符号用$\frac{\partial }{\partial }$。
Lagrange已经注意到微分符号用d而变分符号用δ, 而且应用了符号$\frac{{\rm{\delta }}}{{\rm{\delta }}}$, 所以变导的概念已经隐含在其著作中。例如, 在文献[1]中, Lagrange方程表示为
$
{\rm{d}}\frac{{{\rm{\delta }}T}}{{{\rm{\delta }}\dot \xi }} - \frac{{{\rm{\delta }}T}}{{{\rm{\delta }}\xi }} + \frac{{{\rm{\delta }}U}}{{{\rm{\delta }}\xi }} = 0。
$
|
(9) |
需要说明, Lagrange将$\frac{{\rm{d}}}{{{\rm{d}}t}}\frac{{{\rm{ \mathsf{ δ} }}T}}{{{\rm{ \mathsf{ δ} }}\mathit{\boldsymbol{\dot q}}}}$表示为${\rm{d}}\frac{{{\rm{\delta }}T}}{{{\rm{\delta }}\dot \xi }}$, 应用了微分符号d, 而没有应用求导符号$\frac{{\rm{d}}}{{{\rm{d}}t}}$。
如果将$\xi $表示为$\mathit{\boldsymbol{q}}$, 将d表示为$\frac{{\rm{d}}}{{{\rm{d}}t}}$, 则式(9)可以表示为
$
\frac{{\rm{d}}}{{{\rm{d}}t}}\frac{{{\rm{ \mathsf{ δ} }}T}}{{{\rm{ \mathsf{ δ} }}\mathit{\boldsymbol{\dot q}}}} - \frac{{{\rm{ \mathsf{ δ} }}T}}{{{\rm{ \mathsf{ δ} }}\mathit{\boldsymbol{q}}}} + \frac{{{\rm{ \mathsf{ δ} }}U}}{{{\rm{ \mathsf{ δ} }}\mathit{\boldsymbol{q}}}} = 0。
$
|
(10) |
按照目前的习惯, 将变导$\frac{{\rm{\delta }}}{{\rm{\delta }}}$表示为$\frac{\partial }{\partial }$, 则式(10)就变换为式(7)。
变积分学中变导与微积分学中导数的运算法则, 有时相同, 有时不同, 在后面研究具体问题时可以明显地表现出来。
2 Lagrange方程应用于线性弹性动力学
2.1 一类变量Lagrange方程应用于线性弹性动力学
线性弹性动力学的动能表示为
$
T=\iiint\limits_{V}{\frac{1}{2}\rho \mathit{\boldsymbol{\dot{u}}}\cdot \mathit{\boldsymbol{\dot{u}}}\rm{d}V}。
$
|
(11) |
线性弹性动力学的势能表示为
$
\begin{align}
& U={{U}_{1}}+{{U}_{2}} \\
& \ \ \ =\iiint\limits_{V}{\left[ \frac{1}{2}\left( \frac{1}{2}\nabla \mathit{\boldsymbol{u}}+\frac{1}{2}\mathit{\boldsymbol{u}}\nabla \right):\ \mathit{\boldsymbol{a}}:\left( \frac{1}{2}\nabla \mathit{\boldsymbol{u}}+\frac{1}{2}\mathit{\boldsymbol{u}}\nabla \right)- \right.\ } \\
& \ \ \ \left. \mathit{\boldsymbol{f}}\cdot \mathit{\boldsymbol{u}} \right]\ \rm{d}V-\iint\limits_{{{S}_{\sigma }}}{\mathit{\boldsymbol{T}}\cdot \mathit{\boldsymbol{u}}}\ \rm{d}S, \\
\end{align}
$
|
(12) |
其中, a为刚度系数张量, u为位移矢量, f为体力矢量, T为面力矢量, n为外法向矢量, $\nabla $为Hamilton算子, r为质量密度, Ss为力学边界面, Su为位移边界面, V为空间体积域。${{U}_{1}}=\iiint\limits_{V}{\left[ \frac{1}{2}\left (\frac{1}{2}\nabla \mathit{\boldsymbol{u}}+\frac{1}{2}\mathit{\boldsymbol{u}}\nabla \right): \right.}$ $\left. \mathit{\boldsymbol{a}}:\left (\frac{1}{2}\nabla \mathit{\boldsymbol{u}}+\frac{1}{2}\mathit{\boldsymbol{u}}\nabla \right) \right]\rm{d}V$为弹性体的应变能; U2=$\iiint\limits_{V}{-}\mathit{\boldsymbol{f}}\cdot \mathit{\boldsymbol{u}}\rm{d}V-\iint\limits_{{{S}_{\sigma }}}{\mathit{\boldsymbol{T}}\cdot \mathit{\boldsymbol{u}}}\rm{d}S$为外力势能。
位移边界条件为
$
\mathit{\boldsymbol{u}}-\mathit{\boldsymbol{ }}\!\!\bar{\mathit{\boldsymbol{u}}}\!\!\rm{ }=\boldsymbol{0}。
$
|
(13) |
Lagrange方程表示为
$
\frac{\text{d}}{\text{d}t}\frac{\partial T}{\partial \mathit{\boldsymbol{u}}}-\frac{\partial T}{\partial \mathit{\boldsymbol{u}}}+\frac{\partial U}{\partial \mathit{\boldsymbol{u}}}=0。
$
|
(14) |
推导计算Lagrange方程中的各项:
$
\frac{\partial T}{\partial \mathit{\boldsymbol{u}}}=0,
$
|
(15) |
$
\frac{\rm{d}}{\rm{d}t}\frac{\partial T}{\partial \mathit{\boldsymbol{\dot{u}}}}=\frac{\rm{d}}{\rm{d}t}\frac{\partial }{\partial \mathit{\boldsymbol{\dot{u}}}}\iiint\limits_{V}{\frac{1}{2}\rho \mathit{\boldsymbol{\dot{u}}}\cdot \mathit{\boldsymbol{\dot{u}}}\rm{d}V}=\iiint\limits_{V}{\rho \mathit{\boldsymbol{\ddot{u}}}\rm{d}V}。
$
|
(16) |
势能变导项的推导比较复杂:
$
\begin{align}
& \frac{\partial U}{\partial \mathit{\boldsymbol{u}}}=\frac{\partial }{\partial \mathit{\boldsymbol{u}}}\left\{ \iiint\limits_{V}{\left[ \frac{1}{2}\left( \frac{1}{2}\nabla \mathit{\boldsymbol{u}}+\frac{1}{2}\mathit{\boldsymbol{u}}\nabla \right):\ \mathit{\boldsymbol{a}}: \right.} \right. \\
& \left. \left. \ \ \ \ \ \ \ \ \left( \frac{1}{2}\nabla \mathit{\boldsymbol{u}}+\frac{1}{2}\mathit{\boldsymbol{u}}\nabla \right)-\mathit{\boldsymbol{f}}\cdot \mathit{\boldsymbol{u}} \right]\rm{d}V-\iint\limits_{{{S}_{\sigma }}}{\mathit{\boldsymbol{T}}\cdot \mathit{\boldsymbol{u}}}\ \rm{d}S \right\}, \\
\end{align}
$
|
(17) |
$
\begin{align}
& \frac{\partial U}{\partial \mathit{\boldsymbol{u}}}=\iiint\limits_{V}{\left\{ \frac{\partial }{\partial \mathit{\boldsymbol{u}}}\left[ \frac{1}{2}\left( \frac{1}{2}\nabla \mathit{\boldsymbol{u}}+\frac{1}{2}\mathit{\boldsymbol{u}}\nabla \right):\ \mathit{\boldsymbol{a}}:\ \right. \right.}\left( \frac{1}{2}\nabla \mathit{\boldsymbol{u}}+ \right. \\
& \ \ \ \ \ \ \ \ \left. \left. \left. \frac{1}{2}\mathit{\boldsymbol{u}}\nabla \right) \right]-\mathit{\boldsymbol{f}} \right\}\rm{d}V-\iint\limits_{{{S}_{\sigma }}}{\mathit{\boldsymbol{T}}}\rm{d}S。 \\
\end{align}
$
|
(18) |
由于
$
\begin{align}
& \iiint\limits_{V}{\frac{\partial }{\partial \mathit{\boldsymbol{u}}}\left[ \frac{1}{2}\left( \frac{1}{2}\nabla \mathit{u}+\frac{1}{2}\mathit{u}\nabla \right):\ \mathit{a}:\left( \frac{1}{2}\nabla \mathit{\boldsymbol{u}}+\frac{1}{2}\mathit{\boldsymbol{u}}\nabla \right) \right]\ } \\
& =\iiint\limits_{V}{\mathit{\boldsymbol{a}}:\ \left( \frac{1}{2}\nabla \mathit{\boldsymbol{u}}+\frac{1}{2}\mathit{\boldsymbol{u}}\nabla \right)}:\ \frac{\partial }{\partial \mathit{\boldsymbol{u}}}\mathit{\boldsymbol{u}}\nabla \rm{d}\mathit{V}, \\
\end{align}
$
|
(19) |
应用Green定理:
$
\begin{align}
& \ \ \ \ \iiint\limits_{V}{\left[ \left( \frac{1}{2}\nabla \mathit{\pmb{u}}+\frac{1}{2}\mathit{\pmb{u}}\nabla \right):\ \mathrm{a}:\frac{\partial }{\partial \mathit{\pmb{u}}}\mathit{\pmb{u}}\nabla \right]}\ \text{d}V \\
& =\iint\limits_{{{S}_{\sigma }}+{{S}_{u}}}{\left( \frac{1}{2}\nabla \mathit{\pmb{u}}+\frac{1}{2}\mathit{\pmb{u}}\nabla \right):\mathrm{a}\cdot \mathrm{n}\text{d}S}- \\
& \ \ \ \iiint\limits_{V}{\nabla \cdot \left[ \left( \frac{1}{2}\nabla \mathit{\pmb{u}}+\frac{1}{2}\mathit{\pmb{u}}\nabla \right):\ \mathrm{a} \right]\text{d}V,} \\
\end{align}
$
|
(20) |
将式(19)和(20)代入式(18), 则得
$
\begin{align}
& \frac{\partial U}{\partial \mathit{\boldsymbol{u}}}=-\iiint\limits_{V}{\left\{ \nabla \cdot \left[ \frac{1}{2}(\nabla \mathit{\boldsymbol{u}}+\mathit{\boldsymbol{u}}\nabla ):\ \mathit{\boldsymbol{a}} \right]+\mathit{\boldsymbol{f}} \right\}}\ \rm{d}V+ \\
& \iint\limits_{{{S}_{\sigma }}}{\left[ \left( \frac{1}{2}\nabla \mathit{\boldsymbol{u}}+\frac{1}{2}\mathit{\boldsymbol{u}}\nabla \right):\ \mathit{\boldsymbol{a}}\cdot \mathit{\boldsymbol{n}}-\mathit{\boldsymbol{T}} \right]}\ \rm{d}S。 \\
\end{align}
$
|
(21) |
将相关各式代入Lagrange方程, 可得
$
\begin{align}
& \ \ \ \frac{\rm{d}}{\rm{d}t}\frac{\partial T}{\partial \mathit{\boldsymbol{\dot{u}}}}-\frac{\partial T}{\partial \mathit{\boldsymbol{u}}}+\frac{\partial U}{\partial \mathit{\boldsymbol{u}}} \\
& =\iiint\limits_{V}{\left\{ \rho \mathit{\boldsymbol{\ddot{u}}}-\nabla \cdot \left[ \frac{1}{2}(\nabla \mathit{\boldsymbol{u}}+\mathit{\boldsymbol{u}}\nabla ):\ \mathit{\boldsymbol{a}} \right]-\mathit{\boldsymbol{f}} \right\}\rm{d}V}+ \\
& \ \ \ \iint\limits_{{{S}_{\sigma }}}{\left[ \left( \frac{1}{2}\nabla \mathit{\boldsymbol{u}}+\frac{1}{2}\mathit{\boldsymbol{u}}\nabla \right):\mathit{\boldsymbol{a}}\cdot \mathit{\boldsymbol{n}}-\mathit{\boldsymbol{T}} \right]}\rm{d}S=0。 \\
\end{align}
$
|
(22) |
去掉积分号, 可得弹性动力学方程:
$
\rho \mathit{\boldsymbol{\ddot{u}}}-\nabla \cdot \left[ \frac{1}{2}(\nabla \mathit{\boldsymbol{u}}+\mathit{\boldsymbol{u}}\nabla ):\ \mathit{\boldsymbol{a}} \right]-\mathit{\boldsymbol{f}}=\bf{0},
$
|
(23) |
$
\left( \frac{1}{2}\nabla \mathit{\boldsymbol{u}}+\frac{1}{2}\mathit{\boldsymbol{u}}\nabla \right):\ \mathit{\boldsymbol{a}}\cdot \mathit{\boldsymbol{n}}-\mathit{\boldsymbol{T}}=\bf{0},
$
|
(24) |
先决条件为式(13)。
2.2 两类变量Lagrange方程应用于线性弹性动力学
两类变量Lagrange方程表示为
$
\frac{\rm{d}}{\rm{d}t}\frac{\partial T}{\partial \mathit{\boldsymbol{v}}}-\frac{\partial T}{\partial \mathit{\boldsymbol{u}}}+\frac{\partial U}{\partial \mathit{\boldsymbol{u}}}=0,
$
|
(25) |
弹性动力学的动能表示为
$
T=\iiint\limits_{V}{\frac{1}{2}\rho \mathit{\boldsymbol{v}}\cdot \mathit{\boldsymbol{v}}\rm{d}V},
$
|
(26) |
弹性动力学的势能表示为
$
\begin{align}
& U={{U}_{1}}+{{U}_{2}} \\
& \ \ \ =\iiint\limits_{V}{(\frac{1}{2}\mathit{\boldsymbol{ }}\!\!\varepsilon\!\!\rm{ }:\ \mathit{\boldsymbol{a}}:\mathit{\boldsymbol{ }}\!\!\varepsilon\!\!\rm{ }}-\mathit{\boldsymbol{f}}\cdot \mathit{\boldsymbol{u}})\rm{d}V-\iint\limits_{{{S}_{\sigma }}}{\mathit{\boldsymbol{T}}\cdot \mathit{\boldsymbol{u}}}\ \rm{d}S。 \\
\end{align}
$
|
(27) |
其中, ε为应变张量, v为速度适量, ${{U}_{1}}=$ $\iiint\limits_{V}{\frac{1}{2}\mathit{\boldsymbol{ }}\!\!\varepsilon\!\!\rm{ }:\ \mathit{\boldsymbol{a}}:\mathit{\boldsymbol{ }}\!\!\varepsilon\!\!\rm{ }}\rm{d}V$为弹性体的应变能, ${{U}_{2}}=$ $-\iiint\limits_{V}{\mathit{\boldsymbol{f}}\cdot \mathit{\boldsymbol{u}}\rm{d}V}-\iint\limits_{{{S}_{\sigma }}}{\mathit{\boldsymbol{T}}\cdot \mathit{\boldsymbol{u}}}\rm{d}S$为外力势能。先决条件为
$
\mathit{\boldsymbol{v}}-\mathit{\boldsymbol{\dot{u}}}=\bf{0},
$
|
(28) |
$
\mathit{\boldsymbol{ }}\!\!\varepsilon\!\!\rm{ }-\frac{1}{2}\nabla \mathit{\boldsymbol{u}}-\frac{1}{2}\mathit{\boldsymbol{u}}\nabla =\bf{0},
$
|
(29) |
$
\mathit{\boldsymbol{u}}-\mathit{\boldsymbol{ }}\!\!\bar{\mathit{\boldsymbol{u}}}\!\!\rm{ }=\bf{0} 。
$
|
(30) |
推导计算Lagrange方程中的各项:
$
\frac{\partial T}{\partial \mathit{\boldsymbol{u}}}=0 ,
$
|
(31) |
$
\frac{\rm{d}}{\rm{d}t}\frac{\partial T}{\partial \mathit{\boldsymbol{v}}}=\frac{\rm{d}}{\rm{d}t}\frac{\partial }{\partial \mathit{\boldsymbol{v}}}\iiint\limits_{V}{\frac{1}{2}\rho \mathit{\boldsymbol{v}}\cdot \mathit{\boldsymbol{v}}\rm{d}V}=\iiint\limits_{V}{\rho \mathit{\boldsymbol{\dot{v}}}\rm{d}V}。
$
|
(32) |
势能变导项的推导比较复杂:
$
\frac{\partial U}{\partial \mathit{\boldsymbol{u}}}=\frac{\partial }{\partial \mathit{\boldsymbol{u}}}\left[ \iiint\limits_{V}{\left( \frac{1}{2}\mathit{\boldsymbol{ }}\!\!\varepsilon\!\!\rm{ }:\ \mathit{\boldsymbol{a}}:\mathit{\boldsymbol{ }}\!\!\varepsilon\!\!\rm{ }-\mathit{\boldsymbol{f}}\cdot \mathit{\boldsymbol{u}} \right)}\ \rm{d}V-\iint\limits_{{{S}_{\sigma }}}{\mathit{\boldsymbol{T}}\cdot \mathit{\boldsymbol{u}}\ }\rm{d}S \right],
$
|
(33) |
$
\begin{align}
& \frac{\partial U}{\partial \mathit{\boldsymbol{u}}}=\iiint\limits_{V}{\left[ \frac{\partial }{\partial \mathit{\boldsymbol{u}}}\left( \frac{1}{2}\mathit{\boldsymbol{ }}\!\!\varepsilon\!\!\rm{ }:\ \mathit{\boldsymbol{a}}:\mathit{\boldsymbol{ }}\!\!\varepsilon\!\!\rm{ } \right)-\mathit{\boldsymbol{f}} \right]}\ \rm{d}V-\iint\limits_{{{S}_{\sigma }}}{\mathit{\boldsymbol{T}}}\rm{d}S \\
& =\iiint\limits_{V}{\left( (\mathit{\boldsymbol{ }}\!\!\varepsilon\!\!\rm{ }:\ \mathit{\boldsymbol{a}}:\frac{\partial \mathit{\boldsymbol{ }}\!\!\varepsilon\!\!\rm{ }}{\partial \mathit{\boldsymbol{u}}}-\mathit{\boldsymbol{f}} \right)}\ \rm{d}V-\iint\limits_{{{S}_{\sigma }}}{\mathit{\boldsymbol{T}}}\rm{d}S, \\
\end{align}
$
|
(34) |
考虑到
$
\rm{ }\!\!\delta\!\!\rm{ }\mathit{\boldsymbol{ }}\!\!\varepsilon\!\!\rm{ }-\rm{ }\!\!\delta\!\!\rm{ }\left( \frac{1}{2}\nabla \mathit{\boldsymbol{u}}+\frac{1}{2}\mathit{\boldsymbol{u}}\nabla \right)=\bf{0},
$
|
(35) |
$
\delta \mathit{\boldsymbol{u}}=\bf{0},\left( 在{\mathit{{S}_{u}}}上 \right),
$
|
(36) |
利用刚度系数张量的对称性, 则有
$
\frac{\partial U}{\partial \mathit{\boldsymbol{u}}}=\iiint\limits_{V}{(\mathit{\boldsymbol{ }}\!\!\varepsilon\!\!\rm{ }:\ \mathit{\boldsymbol{a}}:\frac{\partial \nabla \mathit{\boldsymbol{u}}}{\partial \mathit{\boldsymbol{u}}}}-\mathit{\boldsymbol{f}})\rm{d}V-\iint\limits_{{{S}_{\sigma }}}{\mathit{\boldsymbol{T}}}\rm{d}S。
$
|
(37) |
应用Green定理, 并考虑到式(36), 可得
$
\iiint\limits_{V}{\left( \mathit{\boldsymbol{ }}\!\!\varepsilon\!\!\rm{ }:\ \mathit{\boldsymbol{a}}:\frac{\partial \nabla \mathit{\boldsymbol{u}}}{\partial \mathit{\boldsymbol{u}}} \right)}\rm{d}V=\iint\limits_{{{S}_{\sigma }}}{\mathit{\boldsymbol{ }}\!\!\varepsilon\!\!\rm{ }:\ \mathit{\boldsymbol{a}}\cdot \mathit{\boldsymbol{n}}\rm{d}S}-\iiint\limits_{V}{\nabla \cdot (\mathit{\boldsymbol{ }}\!\!\varepsilon\!\!\rm{ }:\ \mathit{\boldsymbol{a}})\rm{d}V}。
$
|
(38) |
将式(38)代入式(37), 则得
$
\begin{align}
& \frac{\partial U}{\partial \mathit{\boldsymbol{u}}}=-\iiint\limits_{V}{[\nabla \cdot (\mathit{\boldsymbol{ }}\!\!\varepsilon\!\!\rm{ }:\ \mathit{\boldsymbol{a}})+\mathit{\boldsymbol{f}}]}\ \rm{d}V+ \\
& \ \ \ \ \ \ \ \ \ \iint\limits_{{{S}_{\sigma }}}{(\mathit{\boldsymbol{ }}\!\!\varepsilon\!\!\rm{ }:\ \mathit{\boldsymbol{a}}\cdot \mathit{\boldsymbol{n}}-\mathit{\boldsymbol{T}})\ }\rm{d}S\ 。 \\
\end{align}
$
|
(39) |
将相关各式代入Lagrange方程, 可得
$
\begin{align}
& \frac{\rm{d}}{\rm{d}t}\frac{\partial T}{\partial \mathit{\boldsymbol{v}}}-\frac{\partial T}{\partial \mathit{\boldsymbol{u}}}+\frac{\partial U}{\partial \mathit{\boldsymbol{u}}}=\iiint\limits_{V}{\left[ \rho \frac{\rm{d}\mathit{\boldsymbol{v}}}{\rm{d}t}-\nabla \cdot (\mathit{\boldsymbol{ }}\!\!\varepsilon\!\!\rm{ }:\mathit{\boldsymbol{a}})-\mathit{\boldsymbol{f}} \right]\rm{d}V}+ \\
& \iint\limits_{{{S}_{\sigma }}}{(\mathit{\boldsymbol{ }}\!\!\varepsilon\!\!\rm{ }:\ \mathit{\boldsymbol{a}}\cdot \mathit{\boldsymbol{n}}-\mathit{\boldsymbol{T}})}\ \rm{d}S=\bf{0}, \\
\end{align}
$
|
(40) |
去掉积分号, 可得弹性动力学方程:
$
\rho \frac{\rm{d}\mathit{\boldsymbol{v}}}{\rm{d}t}-\nabla \cdot (\mathit{\boldsymbol{ }}\!\!\varepsilon\!\!\rm{ }:\ \mathit{\boldsymbol{a}})-\mathit{\boldsymbol{f}}=\bf{0},
$
|
(41) |
$
\mathit{\boldsymbol{ }}\!\!\varepsilon\!\!\rm{ }:\ \mathit{\boldsymbol{a}}\cdot \mathit{\boldsymbol{n}}-\mathit{\boldsymbol{T}}=\bf{0},
$
|
(42) |
先决条件为式(28), (29)和(30)。
2.3 算例
弹性平板是工程结构中的重要构件, 亦可以单独组成一个工程结构。将Lagrange方程应用于弹性平板的动力学比较有代表性。这里讨论线性弹性平板的动力学问题。
弹性平板的动能表示为
$
T=\iint{\frac{1}{2}}\rho h{{\left( \frac{\partial w}{\partial t} \right)}^{2}}\text{d}x\text{d}y。
$
|
(43) |
弹性平板的势能包括两部分。第一部分为板的应变能:
$
\begin{align}
& {{U}_{1}}=\iint{\frac{D}{2}\left\{ {{\left( \frac{{{\partial }^{2}}w}{\partial {{x}^{2}}}+\frac{{{\partial }^{2}}w}{\partial {{y}^{2}}} \right)}^{2}}- \right.}\ \\
& \left. \ \ \ \ \ 2(1-\mu )\left[ \frac{{{\partial }^{2}}w}{\partial {{x}^{2}}}\frac{{{\partial }^{2}}w}{\partial {{y}^{2}}}-{{\left( \frac{{{\partial }^{2}}w}{\partial x\partial y} \right)}^{2}} \right] \right\}\text{d}x\text{d}y; \\
\end{align}
$
|
(44) |
第二部分为横向分布载荷的势能:
$
{{U}_{2}}=\iint{-qw\text{d}x\text{d}y}。
$
|
(45) |
总势能为
$
\begin{align}
& U={{U}_{1}}+{{U}_{2}} \\
& \ \ \ =\iint{\frac{D}{2}\left\{ {{\left( \frac{{{\partial }^{2}}w}{\partial {{x}^{2}}}+\frac{{{\partial }^{2}}w}{\partial {{y}^{2}}} \right)}^{2}}- \right.\ }2(1-\mu )\left[ \frac{{{\partial }^{2}}w}{\partial {{x}^{2}}}\frac{{{\partial }^{2}}w}{\partial {{y}^{2}}}- \right. \\
& \ \ \ \ \left. \left. {{\left( \frac{{{\partial }^{2}}w}{\partial x\partial y} \right)}^{2}} \right] \right\}\ \text{d}x\text{d}y-\iint{qw\text{d}x\text{d}y}。 \\
\end{align}
$
|
(46) |
设为四边简支矩形板, 位移边界条件为
${{\left. w \right|}_{x=0}}=0,{{\left. w \right|}_{y=0}}=0,{{\left. w \right|}_{x=a}}=0,{{\left. w \right|}_{y=b}}=0,$
|
(47) |
力学边界条件为
$
\left\{ \begin{align}
& {{\left. \left( \frac{{{\partial }^{2}}w}{\partial {{x}^{2}}}+\mu \frac{{{\partial }^{2}}w}{\partial {{y}^{2}}} \right) \right|}_{x=0}}=0, \\
& {{\left. \left( \frac{{{\partial }^{2}}w}{\partial {{x}^{2}}}+\mu \frac{{{\partial }^{2}}w}{\partial {{y}^{2}}} \right) \right|}_{x=a}}=0, \\
& \left. \left( \frac{{{\partial }^{2}}w}{\partial {{y}^{2}}}+\mu \frac{{{\partial }^{2}}w}{\partial {{x}^{2}}} \right) \right|_{y=0}^{{}}=0, \\
& {{\left. \left( \frac{{{\partial }^{2}}w}{\partial {{y}^{2}}}+\mu \frac{{{\partial }^{2}}w}{\partial {{x}^{2}}} \right) \right|}_{y-b}}=0\ 。 \\
\end{align} \right.
$
|
(48) |
其中, w为板的挠度, D为板的抗弯刚度, h为板的厚度, m为泊松比, r为质量密度, q为分布载荷。
Lagrange方程表示为
$
\frac{\text{d}}{\text{d}t}\frac{\partial T}{\partial \dot{w}}-\frac{\partial T}{\partial w}+\frac{\partial U}{\partial w}=0。
$
|
(49) |
推导计算Lagrange方程中的各项:
$
\frac{\partial T}{\partial w}=0,
$
|
(50) |
$
\frac{\text{d}}{\text{d}t}\frac{\partial T}{\partial \dot{w}}=\frac{\text{d}}{\text{d}t}\frac{\partial }{\partial \dot{w}}\iint{\frac{1}{2}}\rho h{{(\dot{w})}^{2}}\text{d}x\text{d}y=\iint{\rho h\ddot{w}\text{d}x\text{d}y}。
$
|
(51) |
势能的变导项的推导比较复杂:
$
\begin{align}
& \frac{\partial U}{\partial w}=\frac{\partial }{\partial w}\iint{\frac{D}{2}\left\{ {{\left( \frac{{{\partial }^{2}}w}{\partial {{x}^{2}}}+\frac{{{\partial }^{2}}w}{\partial {{y}^{2}}} \right)}^{2}}- \right.} \\
& \ \ \ \ \ \ \ \ \left. 2(1-\mu )\left[ \frac{{{\partial }^{2}}w}{\partial {{x}^{2}}}\frac{{{\partial }^{2}}w}{\partial {{y}^{2}}}-{{\left( \frac{{{\partial }^{2}}w}{\partial x\partial y} \right)}^{2}} \right] \right\}\ \text{d}x\text{d}y- \\
& \ \ \ \ \ \ \ \ \frac{\partial }{\partial w}\iint{qw\text{d}x\text{d}y,} \\
\end{align}
$
|
(52) |
$
\begin{align}
& \frac{\partial U}{\partial w}=\int_{0}^{a}{\int_{0}^{b}{\left\{ D\left[ \left( \frac{{{\partial }^{2}}w}{\partial {{x}^{2}}}+\frac{{{\partial }^{2}}w}{\partial {{y}^{2}}} \right)\frac{\partial }{\partial w}\left( \frac{{{\partial }^{2}}w}{\partial {{x}^{2}}}+\frac{{{\partial }^{2}}w}{\partial {{y}^{2}}} \right)- \right. \right.}} \\
& \ \ \ \ \ \ \ \ (1-\mu )\left( \frac{{{\partial }^{2}}w}{\partial {{x}^{2}}}\frac{\partial }{\partial w}\frac{{{\partial }^{2}}w}{\partial {{y}^{2}}}+ \right.\frac{{{\partial }^{2}}w}{\partial {{y}^{2}}}\frac{\partial }{\partial w}\frac{{{\partial }^{2}}w}{\partial {{x}^{2}}}- \\
& \ \ \ \ \ \ \ \ \left. \left. \left. 2\frac{{{\partial }^{2}}w}{\partial x\partial y}\frac{\partial }{\partial w}\frac{{{\partial }^{2}}w}{\partial x\partial y} \right) \right]-q \right\}\text{d}x\text{d}y。 \\
\end{align}
$
|
(53) |
由于
$
\begin{align}
& \int_{0}^{a}{\int_{0}^{b}{\left\{ D\left[ \left[ \frac{{{\partial }^{2}}w}{\partial {{x}^{2}}}+\frac{{{\partial }^{2}}w}{\partial {{y}^{2}}} \right]\frac{\partial }{\partial w}\left( \frac{{{\partial }^{2}}w}{\partial {{x}^{2}}}+\frac{{{\partial }^{2}}w}{\partial {{y}^{2}}} \right)- \right. \right.}}(1-\mu )\cdot \\
& \left( \frac{{{\partial }^{2}}w}{\partial {{x}^{2}}}\frac{\partial }{\partial w}\frac{{{\partial }^{2}}w}{\partial {{y}^{2}}}+ \right.\frac{{{\partial }^{2}}w}{\partial {{y}^{2}}}\frac{\partial }{\partial w}\frac{{{\partial }^{2}}w}{\partial {{x}^{2}}}-\ \left. \left. \left. 2\frac{{{\partial }^{2}}w}{\partial x\partial y}\frac{\partial }{\partial w}\frac{{{\partial }^{2}}w}{\partial x\partial y} \right) \right] \right\}\ \text{d}x\text{d}y \\
& =\int_{0}^{a}{\int_{0}^{b}{\left\{ D\left[ \frac{{{\partial }^{2}}w}{\partial {{x}^{2}}}\frac{\partial }{\partial w}\frac{{{\partial }^{2}}w}{\partial {{x}^{2}}}+\frac{{{\partial }^{2}}w}{\partial {{y}^{2}}}\frac{\partial }{\partial w}\frac{{{\partial }^{2}}w}{\partial {{y}^{2}}}+\mu \frac{{{\partial }^{2}}w}{\partial {{x}^{2}}}\frac{\partial }{\partial w}\frac{{{\partial }^{2}}w}{\partial {{y}^{2}}}+ \right. \right.}} \\
& \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \left. \left. \mu \frac{{{\partial }^{2}}w}{\partial {{y}^{2}}}\frac{\partial }{\partial w}\frac{{{\partial }^{2}}w}{\partial {{x}^{2}}}+2(1-\mu )\frac{{{\partial }^{2}}w}{\partial x\partial y}\frac{\partial }{\partial w}\frac{{{\partial }^{2}}w}{\partial x\partial y} \right] \right\}\ \text{d}x\text{d}y, \\
\end{align}
$
|
(54) |
应用Green定理:
$
\int_{0}^{a}{\int_{0}^{b}{\frac{{{\partial }^{2}}w}{\partial {{x}^{2}}}\frac{\partial }{\partial w}\frac{{{\partial }^{2}}w}{\partial {{x}^{2}}}}}\text{d}x\text{d}y=\int_{0}^{b}{\left. \frac{{{\partial }^{2}}w}{\partial {{x}^{2}}}\frac{\partial }{\partial w}\frac{\partial w}{\partial x} \right|_{0}^{a}}\text{d}y-\int_{0}^{b}{\left. \frac{{{\partial }^{3}}w}{\partial {{x}^{3}}}\frac{\partial }{\partial w}w \right|_{0}^{a}\text{d}y+}\int_{0}^{b}{\int_{0}^{a}{\frac{{{\partial }^{4}}w}{\partial {{x}^{4}}}\frac{\partial }{\partial w}w\text{d}x\text{d}y}},
$
|
(55) |
$
\int_{0}^{a}{\int_{0}^{b}{\frac{{{\partial }^{2}}w}{\partial {{y}^{2}}}\frac{\partial }{\partial w}\frac{{{\partial }^{2}}w}{\partial {{y}^{2}}}}}\text{d}x\text{d}y=\int_{0}^{a}{\left. \frac{{{\partial }^{2}}w}{\partial {{y}^{2}}}\frac{\partial }{\partial w}\frac{\partial w}{\partial y} \right|_{0}^{b}}\text{d}x-\int_{0}^{a}{\left. \frac{{{\partial }^{3}}w}{\partial {{y}^{3}}}\frac{\partial }{\partial w}w \right|_{0}^{b}\text{d}x+}\int_{0}^{a}{\int_{0}^{b}{\frac{{{\partial }^{4}}w}{\partial {{y}^{4}}}\frac{\partial }{\partial w}w\text{d}x\text{d}y}},
$
|
(56) |
$
\int_{0}^{a}{\int_{0}^{b}{\frac{{{\partial }^{2}}w}{\partial {{x}^{2}}}\frac{\partial }{\partial w}\frac{{{\partial }^{2}}w}{\partial {{y}^{2}}}}}\text{d}x\text{d}y=\int_{0}^{a}{\left. \frac{{{\partial }^{2}}w}{\partial {{x}^{2}}}\frac{\partial }{\partial w}\frac{\partial w}{\partial y} \right|_{0}^{b}}\text{d}x-\int_{0}^{a}{\left. \frac{{{\partial }^{3}}w}{\partial {{x}^{2}}\partial y}\frac{\partial }{\partial w}w \right|_{0}^{b}\text{d}x}+\int_{0}^{a}{\int_{0}^{b}{\frac{{{\partial }^{4}}w}{\partial {{x}^{2}}\partial {{y}^{2}}}\frac{\partial }{\partial w}w\text{d}x\text{d}y}},
$
|
(57) |
$
\int_{0}^{a}{\int_{0}^{b}{\frac{{{\partial }^{2}}w}{\partial {{y}^{2}}}\frac{\partial }{\partial w}\frac{{{\partial }^{2}}w}{\partial {{x}^{2}}}}}\text{d}x\text{d}y=\int_{0}^{b}{\left. \frac{{{\partial }^{2}}w}{\partial {{y}^{2}}}\frac{\partial }{\partial w}\frac{\partial w}{\partial x} \right|_{0}^{a}}\text{d}y-\int_{0}^{b}{\left. \frac{{{\partial }^{3}}w}{\partial {{y}^{2}}\partial x}\frac{\partial }{\partial w}w \right|_{0}^{a}\text{d}y}+\int_{0}^{a}{\int_{0}^{b}{\frac{{{\partial }^{4}}w}{\partial {{x}^{2}}\partial {{y}^{2}}}\frac{\partial }{\partial w}w\text{d}x\text{d}y\ }},
$
|
(58) |
$
\begin{align}
& \int_{0}^{a}{\int_{0}^{b}{\frac{{{\partial }^{2}}w}{\partial x\partial y}\frac{\partial }{\partial w}\frac{{{\partial }^{2}}w}{\partial x\partial y}}}\text{d}x\text{d}y=\int_{0}^{a}{\left. \frac{{{\partial }^{2}}w}{\partial x\partial y}\frac{\partial }{\partial w}\frac{\partial w}{\partial x} \right|_{0}^{b}}\text{d}x- \\
& \int_{0}^{b}{\left. \frac{{{\partial }^{3}}w}{\partial x\partial {{y}^{2}}}\frac{\partial }{\partial w}w \right|_{0}^{a}\text{d}y+}\int_{0}^{a}{\int_{0}^{b}{\frac{{{\partial }^{4}}w}{\partial {{x}^{2}}\partial {{y}^{2}}}\frac{\partial }{\partial w}w\text{d}x\text{d}y}} \\
& =\left. \frac{{{\partial }^{2}}w(x,b)}{\partial x\partial y}\frac{\partial }{\partial w}w(x,b) \right|_{0}^{a}-\left. \frac{{{\partial }^{2}}w(x,0)}{\partial x\partial y}\frac{\partial }{\partial w}w(x,0) \right|_{0}^{a}- \\
& \ \ \ \int_{0}^{a}{\left. \frac{{{\partial }^{3}}w}{\partial {{x}^{2}}\partial y}\frac{\partial }{\partial w}w \right|_{0}^{b}\text{d}x}-\int_{0}^{b}{\left. \frac{{{\partial }^{3}}w}{\partial x\partial {{y}^{2}}}\frac{\partial }{\partial w}w \right|_{0}^{a}\text{d}y+}\int_{0}^{a}{\int_{0}^{b}{\frac{{{\partial }^{4}}w}{\partial {{x}^{2}}\partial {{y}^{2}}}\frac{\partial }{\partial w}w\text{d}x\text{d}y,}} \\
\end{align}
$
|
(59) |
将式(54)~(59)代入式(53), 考虑到式(47)和(48), 则
$
\frac{\partial U}{\partial w}=\int_{0}^{a}{\int_{0}^{b}{\left[ D\left( \frac{{{\partial }^{4}}w}{\partial {{x}^{4}}}+2\frac{{{\partial }^{4}}w}{\partial {{x}^{2}}\partial {{y}^{2}}}+\frac{{{\partial }^{4}}w}{\partial {{y}^{4}}} \right)-q \right]\text{d}x\text{d}y}}。
$
|
(60) |
将相关各式代入Lagrange方程, 可得
$
\frac{\text{d}}{\text{d}t}\frac{\partial T}{\partial \dot{w}}-\frac{\partial T}{\partial w}+\frac{\partial U}{\partial w}=\int_{0}^{a}{\int_{0}^{b}{\left[ \rho h\ddot{w}+D\left( \frac{{{\partial }^{4}}w}{\partial {{x}^{4}}}+2\frac{{{\partial }^{4}}w}{\partial {{x}^{2}}\partial {{y}^{2}}}+\frac{{{\partial }^{4}}w}{\partial {{y}^{4}}} \right)-q \right]}}\ \text{d}x\text{d}y=0。
$
|
(61) |
去掉积分号, 可得弹性动力学方程:
$
\rho h\ddot{w}+D\left( \frac{{{\partial }^{4}}w}{\partial {{x}^{4}}}+2\frac{{{\partial }^{4}}w}{\partial {{x}^{2}}\partial {{y}^{2}}}+\frac{{{\partial }^{4}}w}{\partial {{y}^{4}}} \right)-q=0。
$
|
(62) |
位移边界条件为式(47), 力学边界条件为式(48), 都是强制边界条件。当然, 也可以将力学边界条件处理为自然边界条件, 这需要通过变导运算获得。
3 Lagrange方程应用于非线性弹性动力学
3.1 一类变量Lagrange方程应用于非线性弹性动力学
非线性弹性动力学的动能表示为
$
T=\iiint\limits_{V}{\frac{1}{2}\rho \mathit{\boldsymbol{\dot{u}}}\cdot \mathit{\boldsymbol{\dot{u}}}\rm{d}V},
$
|
(63) |
非线性弹性动力学的势能表示为
$
\begin{align}
& U={{U}_{1}}+{{U}_{2}} \\
& \ \ \ =\iiint\limits_{V}{\left[ A\left( \frac{1}{2}\nabla \mathit{\pmb{u}}+\frac{1}{2}\mathit{\pmb{u}}\nabla +\frac{1}{2}\nabla \mathit{\pmb{u}}\cdot \mathit{\pmb{u}}\nabla \right)-\mathit{\pmb{f}}\cdot \mathit{\pmb{u}} \right]}\text{d}V- \\
& \ \ \ \ \ \iint\limits_{{{S}_{\sigma }}}{\mathit{\pmb{T}}\cdot \mathit{\pmb{u}}}\text{d}S, \\
\end{align}
$
|
(64) |
其中, ${{U}_{1}}=\iiint\limits_{V}{A\left (\frac{1}{2}\nabla \mathit{\pmb{u}}+\frac{1}{2}\mathit{\pmb{u}}\nabla +\frac{1}{2}\nabla \mathit{\pmb{u}}\cdot \mathit{\pmb{u}}\nabla \right)}\ \text{d}V$为弹性体的应变能; ${{U}_{2}}=-\iiint\limits_{V}{\mathit{\pmb{f}}\cdot \mathit{\pmb{u}}\text{d}V}-\iint\limits_{{{S}_{\sigma }}}{\mathit{\pmb{T}}\cdot \mathit{\pmb{u}}}\text{d}S$为外力势能。
位移边界条件为
$
\mathit{\boldsymbol{u}}-\mathit{\boldsymbol{ }}\!\!\bar{\mathit{\boldsymbol{u}}}\!\!\rm{ }=\bf{0} 。
$
|
(65) |
Lagrange方程表示为
$
\frac{\rm{d}}{\rm{d}t}\frac{\partial T}{\partial \mathit{\boldsymbol{\dot{u}}}}-\frac{\partial T}{\partial \mathit{\boldsymbol{u}}}+\frac{\partial U}{\partial \mathit{\boldsymbol{u}}}=0。
$
|
(66) |
推导计算Lagrange方程中的各项:
$
\frac{\partial T}{\partial \mathit{\boldsymbol{u}}}=0,
$
|
(67) |
$
\frac{\rm{d}}{\rm{d}t}\frac{\partial T}{\partial \mathit{\boldsymbol{\dot{u}}}}=\frac{\rm{d}}{\rm{d}t}\frac{\partial }{\partial \mathit{\boldsymbol{\dot{u}}}}\iiint\limits_{V}{\frac{1}{2}\rho \mathit{\boldsymbol{\dot{u}\dot{u}}}\rm{d}V}=\iiint\limits_{V}{\rho \mathit{\boldsymbol{\ddot{u}}}\rm{d}\mathit{V}}。
$
|
(68) |
势能变导项的推导比较复杂:
$
\frac{\partial U}{\partial \mathit{\boldsymbol{u}}}=\frac{\partial }{\partial \mathit{\boldsymbol{u}}}\left\{ \iiint\limits_{V}{\left[ A\left( \frac{1}{2}\nabla \mathit{\boldsymbol{u}}+\frac{1}{2}\mathit{\boldsymbol{u}}\nabla +\frac{1}{2}\nabla \mathit{\boldsymbol{u}}\cdot \mathit{\boldsymbol{u}}\nabla \right)-\mathit{\boldsymbol{f}}\cdot \mathit{\boldsymbol{u}} \right]}\ \rm{d}V \right.\left. -\iint\limits_{{{S}_{\sigma }}}{\mathit{\boldsymbol{T}}\cdot \mathit{\boldsymbol{u}}}\ \rm{d}S \right\},
$
|
(69) |
$
\frac{\partial U}{\partial \mathit{\boldsymbol{u}}}=\iiint\limits_{V}{\left[ \frac{\partial }{\partial \mathit{\boldsymbol{u}}}A\left( \frac{1}{2}\nabla \mathit{\boldsymbol{u}}+\frac{1}{2}\mathit{\boldsymbol{u}}\nabla +\frac{1}{2}\nabla \mathit{\boldsymbol{u}}\cdot \mathit{\boldsymbol{u}}\nabla \right)-\mathit{\boldsymbol{f}} \right]}\ \rm{d}V-\iint\limits_{{{S}_{\sigma }}}{\mathit{\boldsymbol{T}}}\rm{d}S。
$
|
(70) |
由于
$
\begin{align}
& \iiint\limits_{V}{\frac{\partial }{\partial \mathit{\boldsymbol{u}}}A\left( \frac{1}{2}\nabla \mathit{\boldsymbol{u}}+\frac{1}{2}\mathit{\boldsymbol{u}}\nabla +\frac{1}{2}\nabla \mathit{\boldsymbol{u}}\cdot \mathit{\boldsymbol{u}}\nabla \right)}\ \rm{d}V= \\
& \iiint\limits_{V}{\left[ (\mathit{\boldsymbol{I}}+\mathit{\boldsymbol{u}}\nabla )\cdot \frac{\partial A\left( \frac{1}{2}\nabla \mathit{\boldsymbol{u}}+\frac{1}{2}\mathit{\boldsymbol{u}}\nabla +\frac{1}{2}\nabla \mathit{\boldsymbol{u}}\cdot \mathit{\boldsymbol{u}}\nabla \right)}{\partial \left( \frac{1}{2}\nabla \mathit{\boldsymbol{u}}+\frac{1}{2}\mathit{\boldsymbol{u}}\nabla +\frac{1}{2}\nabla \mathit{\boldsymbol{u}}\cdot \mathit{\boldsymbol{u}}\nabla \right)} \right]}:\frac{\partial }{\partial \mathit{\boldsymbol{u}}}\mathit{\boldsymbol{u}}\nabla \rm{d}V, \\
\end{align}
$
|
(71) |
应用Green定理, 并考虑到式(65), 可得
$
\begin{align}
& \ \ \ \ \iiint\limits_{V}{\left[ (\mathit{\boldsymbol{I}}+\mathit{\boldsymbol{u}}\nabla )\cdot \frac{\partial A\left( \frac{1}{2}\nabla \mathit{\boldsymbol{u}}+\frac{1}{2}\mathit{\boldsymbol{u}}\nabla +\frac{1}{2}\nabla \mathit{\boldsymbol{u}}\cdot \mathit{\boldsymbol{u}}\nabla \right)}{\partial \left( \frac{1}{2}\nabla \mathit{\boldsymbol{u}}+\frac{1}{2}\mathit{\boldsymbol{u}}\nabla +\frac{1}{2}\nabla \mathit{\boldsymbol{u}}\cdot \mathit{\boldsymbol{u}}\nabla \right)} \right]}:\ \frac{\partial }{\partial \mathit{\boldsymbol{u}}}\mathit{\boldsymbol{u}}\nabla \rm{d}V \\
& =\iint\limits_{{{S}_{\sigma }}}{\left[ (\mathit{\boldsymbol{I}}+\mathit{\boldsymbol{u}}\nabla )\cdot \frac{\partial A\left( \frac{1}{2}\nabla \mathit{\boldsymbol{u}}+\frac{1}{2}\mathit{\boldsymbol{u}}\nabla +\frac{1}{2}\nabla \mathit{\boldsymbol{u}}\cdot \mathit{\boldsymbol{u}}\nabla \right)}{\partial \left( \frac{1}{2}\nabla \mathit{\boldsymbol{u}}+\frac{1}{2}\mathit{\boldsymbol{u}}\nabla +\frac{1}{2}\nabla \mathit{\boldsymbol{u}}\cdot \mathit{\boldsymbol{u}}\nabla \right)}\cdot \mathit{\boldsymbol{n}} \right]\rm{d}S}- \\
& \ \iiint\limits_{V}{\left[ (\mathit{\boldsymbol{I}}+\mathit{\boldsymbol{u}}\nabla )\cdot \frac{\partial A\left( \frac{1}{2}\nabla \mathit{\boldsymbol{u}}+\frac{1}{2}\mathit{\boldsymbol{u}}\nabla +\frac{1}{2}\nabla \mathit{\boldsymbol{u}}\cdot \mathit{\boldsymbol{u}}\nabla \right)}{\partial \left( \frac{1}{2}\nabla \mathit{\boldsymbol{u}}+\frac{1}{2}\mathit{\boldsymbol{u}}\nabla +\frac{1}{2}\nabla \mathit{\boldsymbol{u}}\cdot \mathit{\boldsymbol{u}}\nabla \right)}\cdot \nabla \right]\rm{d}V}。 \\
\end{align}
$
|
(72) |
将式(71)和(72)代入式(70), 则得
$
\begin{align}
& \frac{\partial U}{\partial \mathit{\boldsymbol{u}}}=-\iiint\limits_{V}{\left[ (\mathit{\boldsymbol{I}}+\mathit{\boldsymbol{u}}\nabla )\cdot \frac{\partial A\left( \frac{1}{2}\nabla \mathit{\boldsymbol{u}}+\frac{1}{2}\mathit{\boldsymbol{u}}\nabla +\frac{1}{2}\nabla \mathit{\boldsymbol{u}}\cdot \mathit{\boldsymbol{u}}\nabla \right)}{\partial \left( \frac{1}{2}\nabla \mathit{\boldsymbol{u}}+\frac{1}{2}\mathit{\boldsymbol{u}}\nabla +\frac{1}{2}\nabla \mathit{\boldsymbol{u}}\cdot \mathit{\boldsymbol{u}}\nabla \right)}\cdot \nabla +\mathit{\boldsymbol{f}} \right]\ }\rm{d}V+ \\
& \ \ \ \ \ \ \ \ \ \iint\limits_{{{S}_{\sigma }}}{\left[ (\mathit{\boldsymbol{I}}+\mathit{\boldsymbol{u}}\nabla )\cdot \frac{\partial A\left( \frac{1}{2}\nabla \mathit{\boldsymbol{u}}+\frac{1}{2}\mathit{\boldsymbol{u}}\nabla +\frac{1}{2}\nabla \mathit{\boldsymbol{u}}\cdot \mathit{\boldsymbol{u}}\nabla \right)}{\partial \left( \frac{1}{2}\nabla \mathit{\boldsymbol{u}}+\frac{1}{2}\mathit{\boldsymbol{u}}\nabla +\frac{1}{2}\nabla \mathit{\boldsymbol{u}}\cdot \mathit{\boldsymbol{u}}\nabla \right)}\cdot \mathit{\boldsymbol{n}}-\mathit{\boldsymbol{T}} \right]}\ \rm{d}S。 \\
\end{align}
$
|
(73) |
将相关各式代入Lagrange方程, 可得
$
\begin{align}
& \frac{\rm{d}}{\rm{d}t}\frac{\partial T}{\partial \mathit{\boldsymbol{\dot{u}}}}-\frac{\partial T}{\partial \mathit{\boldsymbol{u}}}+\frac{\partial U}{\partial \mathit{\boldsymbol{u}}}= \\
& \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \iiint\limits_{V}{\left[ \rho \mathit{\boldsymbol{\ddot{u}}}-(\mathit{\boldsymbol{I}}+\mathit{\boldsymbol{u}}\nabla )\cdot \frac{\partial A\left( \frac{1}{2}\nabla \mathit{\boldsymbol{u}}+\frac{1}{2}\mathit{\boldsymbol{u}}\nabla +\frac{1}{2}\nabla \mathit{\boldsymbol{u}}\cdot \mathit{\boldsymbol{u}}\nabla \right)}{\partial \left( \frac{1}{2}\nabla \mathit{\boldsymbol{u}}+\frac{1}{2}\mathit{\boldsymbol{u}}\nabla +\frac{1}{2}\nabla \mathit{\boldsymbol{u}}\cdot \mathit{\boldsymbol{u}}\nabla \right)}\cdot \nabla -\mathit{\boldsymbol{f}} \right]\rm{d}V+} \\
& \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \iint\limits_{{{S}_{\sigma }}}{\left[ (\mathit{\boldsymbol{I}}+\mathit{\boldsymbol{u}}\nabla )\cdot \frac{\partial A\left( \frac{1}{2}\nabla \mathit{\boldsymbol{u}}+\frac{1}{2}\mathit{\boldsymbol{u}}\nabla +\frac{1}{2}\nabla \mathit{\boldsymbol{u}}\cdot \mathit{\boldsymbol{u}}\nabla \right)}{\partial \left( \frac{1}{2}\nabla \mathit{\boldsymbol{u}}+\frac{1}{2}\mathit{\boldsymbol{u}}\nabla +\frac{1}{2}\nabla \mathit{\boldsymbol{u}}\cdot \mathit{\boldsymbol{u}}\nabla \right)}\cdot \mathit{\boldsymbol{n}}-\mathit{\boldsymbol{T}} \right]}\ \rm{d}S=0。 \\
\end{align}
$
|
(74) |
去掉积分号, 可得弹性动力学方程:
$
\rho \mathit{\boldsymbol{\ddot{u}}}-(\mathit{\boldsymbol{I}}+\mathit{\boldsymbol{u}}\nabla )\cdot \frac{\partial A\left( \frac{1}{2}\nabla \mathit{\boldsymbol{u}}+\frac{1}{2}\mathit{\boldsymbol{u}}\nabla +\frac{1}{2}\nabla \mathit{\boldsymbol{u}}\cdot \mathit{\boldsymbol{u}}\nabla \right)}{\partial \left( \frac{1}{2}\nabla \mathit{\boldsymbol{u}}+\frac{1}{2}\mathit{\boldsymbol{u}}\nabla +\frac{1}{2}\nabla \mathit{\boldsymbol{u}}\cdot \mathit{\boldsymbol{u}}\nabla \right)}\cdot \nabla -\mathit{\boldsymbol{f}}=\bf{0},
$
|
(75) |
$
(\mathit{\boldsymbol{I}}+\mathit{\boldsymbol{u}}\nabla )\cdot \frac{\partial A\left( \frac{1}{2}\nabla \mathit{\boldsymbol{u}}+\frac{1}{2}\mathit{\boldsymbol{u}}\nabla +\frac{1}{2}\nabla \mathit{\boldsymbol{u}}\cdot \mathit{\boldsymbol{u}}\nabla \right)}{\partial \left( \frac{1}{2}\nabla \mathit{\boldsymbol{u}}+\frac{1}{2}\mathit{\boldsymbol{u}}\nabla +\frac{1}{2}\nabla \mathit{\boldsymbol{u}}\cdot \mathit{\boldsymbol{u}}\nabla \right)}\cdot \mathit{\boldsymbol{n}}-\mathit{\boldsymbol{T}}=\bf{0},
$
|
(76) |
先决条件为式(65)。
3.2 两类变量Lagrange方程应用于非线性弹性动力学
非线性弹性动力学的动能表示为
$
T=\iiint\limits_{V}{\frac{1}{2}\rho \mathit{\boldsymbol{v}}\cdot \mathit{\boldsymbol{v}}\rm{d}\mathit{V}}。
$
|
(77) |
非线性弹性动力学的势能表示为
$
U={{U}_{1}}+{{U}_{2}}=\iiint\limits_{V}{[A(\mathit{\boldsymbol{E}})}-\mathit{\boldsymbol{f}}\cdot \mathit{\boldsymbol{u}}]\rm{d}V-\iint\limits_{{{S}_{\sigma }}}{\mathit{\boldsymbol{T}}\cdot \mathit{\boldsymbol{u}}}\rm{d}\mathit{S},
$
|
(78) |
其中, ${{U}_{1}}=\iiint\limits_{V}{A (\mathit{\boldsymbol{E}})}\ \rm{d}V$为弹性体的应变能, ${{U}_{2}}=$ $-\iiint\limits_{V}{\mathrm{f}\cdot \mathit{\pmb{u}}\text{d}V}-\iint\limits_{{{S}_{\sigma }}}{\mathit{\pmb{T}}\cdot \mathit{\pmb{u}}}\text{d}S$为外力势能。先决条件为
$
\mathit{\boldsymbol{v}}-\mathit{\boldsymbol{\dot{u}}}=\bf{0},
$
|
(79) |
$
\mathit{\boldsymbol{E}}-\frac{1}{2}(\nabla \mathit{\boldsymbol{u}}+\mathit{\boldsymbol{u}}\nabla +\nabla \mathit{\boldsymbol{u}}\cdot \mathit{\boldsymbol{u}}\nabla )=\bf{0},
$
|
(80) |
$
\mathit{\boldsymbol{u}}-\mathit{\boldsymbol{ }}\!\!\bar{\mathit{\boldsymbol{u}}}\!\!\rm{ }=\bf{0},
$
|
(81) |
其中, E为Green应变张量, u为位移矢量, f为体力矢量, T为面力矢量, v为速度矢量, ρ为质量密度, A(E)为应变能函数, n为法向矢量, ▽为Hamilton算子, Sσ为力的边界, Su为位移边界, V为空间体积域。
Lagrange方程表示为
$
\frac{\rm{d}}{\rm{d}t}\frac{\partial T}{\partial \mathit{\boldsymbol{v}}}-\frac{\partial T}{\partial \mathit{\boldsymbol{u}}}+\frac{\partial U}{\partial \mathit{\boldsymbol{u}}}=0。
$
|
(82) |
推导计算Lagrange方程中的各项:
$
\frac{\partial T}{\partial \mathit{\boldsymbol{u}}}=0,
$
|
(83) |
$
\frac{\rm{d}}{\rm{d}t}\frac{\partial T}{\partial \mathit{\boldsymbol{v}}}=\frac{\rm{d}}{\rm{d}t}\frac{\partial }{\partial \mathit{\boldsymbol{v}}}\iiint\limits_{V}{\frac{1}{2}\rho \mathit{\boldsymbol{v}}\cdot \mathit{\boldsymbol{v}}\rm{d}V}=\iiint\limits_{V}{\rho \mathit{\boldsymbol{\dot{v}}}\rm{d}\mathit{V}}。
$
|
(84) |
势能变导项的推导较为复杂:
$
\frac{\partial U}{\partial \mathit{\boldsymbol{u}}}=\frac{\partial }{\partial \mathit{\boldsymbol{u}}}\left\{ \iiint\limits_{V}{[A(E)}-\mathit{\boldsymbol{f}}\cdot \mathit{\boldsymbol{u}}]\rm{d}V-\iint\limits_{{{S}_{\sigma }}}{\mathit{\boldsymbol{T}}\cdot \mathit{\boldsymbol{u}}}\rm{d}S \right\},
$
|
(85) |
$
\begin{align}
& \frac{\partial U}{\partial \mathit{\boldsymbol{u}}}=\iiint\limits_{V}{\left[ \frac{\partial }{\partial \mathit{\boldsymbol{u}}}A(\mathit{\boldsymbol{E}})-\mathit{\boldsymbol{f}} \right]}\ \rm{d}V-\iint\limits_{{{S}_{\sigma }}}{\mathit{\boldsymbol{T}}}\rm{d}S \\
& \ \ \ \ \ =\iiint\limits_{V}{\left[ \frac{\partial A(\mathit{\boldsymbol{E}})}{\partial \mathit{\boldsymbol{E}}}:\frac{\partial \mathit{\boldsymbol{E}}}{\partial \mathit{\boldsymbol{u}}}-\mathit{\boldsymbol{f}} \right]}\ \rm{d}V-\iint\limits_{{{S}_{\sigma }}}{\mathit{\boldsymbol{T}}}\rm{d}S。 \\
\end{align}
$
|
(86) |
考虑到
$
\rm{ }\!\!\delta\!\!\rm{ }\mathit{\boldsymbol{E}}-\rm{ }\!\!\delta\!\!\rm{ }\frac{1}{2}(\nabla \mathit{\boldsymbol{u}}+\mathit{\boldsymbol{u}}\nabla +\nabla \mathit{\boldsymbol{u}}\cdot \mathit{\boldsymbol{u}}\nabla )=0,
$
|
(87) |
则有
$
\begin{align}
& \iiint\limits_{V}{\frac{\partial }{\partial \mathit{\boldsymbol{u}}}A(\mathit{\boldsymbol{E}})}\rm{d}V=\iiint\limits_{V}{\frac{\partial A(\mathit{\boldsymbol{E}})}{\partial \mathit{\boldsymbol{E}}}:\frac{\partial \mathit{\boldsymbol{E}}}{\partial \mathit{\boldsymbol{u}}}}\rm{d}V \\
& =\iiint\limits_{V}{\left[ (\mathit{\boldsymbol{I}}+\mathit{\boldsymbol{u}}\nabla )\cdot \frac{\partial A(\mathit{\boldsymbol{E}})}{\partial (\mathit{\boldsymbol{E}})} \right]}:\frac{\partial }{\partial \mathit{\boldsymbol{u}}}\mathit{\boldsymbol{u}}\nabla \rm{d}V。 \\
\end{align}
$
|
(88) |
应用Green定理, 并且考虑到
$
\delta \mathit{\boldsymbol{u}}=0\ \ \ \left( 在{{S}_{u}}上 \right),
$
|
(89) |
可得
$
\begin{align}
& \ \ \ \iiint\limits_{V}{\left[ (\mathit{\boldsymbol{I}}+\mathit{\boldsymbol{u}}\nabla )\cdot \frac{\partial A(\mathit{\boldsymbol{E}})}{\partial (\mathit{\boldsymbol{E}})} \right]}:\ \frac{\partial }{\partial \mathit{\boldsymbol{u}}}\mathit{\boldsymbol{u}}\nabla \rm{d}V \\
& =\iint\limits_{{{S}_{\sigma }}+{{S}_{u}}}{\left[ (\mathit{\boldsymbol{I}}+\mathit{\boldsymbol{u}}\nabla )\cdot \frac{\partial A(\mathit{\boldsymbol{E}})}{\partial (\mathit{\boldsymbol{E}})}\cdot \mathit{\boldsymbol{n}}\frac{\partial \mathit{\boldsymbol{u}}}{\partial \mathit{\boldsymbol{u}}} \right]\rm{d}S}- \\
& \ \ \ \iiint\limits_{V}{\left[ (\mathit{\boldsymbol{I}}+\mathit{\boldsymbol{u}}\nabla )\cdot \frac{\partial A(\mathit{\boldsymbol{E}})}{\partial (\mathit{\boldsymbol{E}})}\cdot \nabla \right]\rm{d}V} \\
& =\iint\limits_{{{S}_{\sigma }}}{\left[ (\mathit{\boldsymbol{I}}+\mathit{\boldsymbol{u}}\nabla )\cdot \frac{\partial A(\mathit{\boldsymbol{E}})}{\partial (\mathit{\boldsymbol{E}})}\cdot \mathit{\boldsymbol{n}} \right]\rm{d}S}- \\
& \ \ \ \iiint\limits_{V}{\left[ (\mathit{\boldsymbol{I}}+\mathit{\boldsymbol{u}}\nabla )\cdot \frac{\partial A(\mathit{\boldsymbol{E}})}{\partial (\mathit{\boldsymbol{E}})}\cdot \nabla \right]\rm{d}\mathit{V}}。 \\
\end{align}
$
|
(90) |
将式(88)和(90)代入式(86), 则得
$
\begin{align}
& \frac{\partial U}{\partial \mathit{\boldsymbol{u}}}=-\iiint\limits_{V}{\left[ (\mathit{\boldsymbol{I}}+\mathit{\boldsymbol{u}}\nabla )\cdot \frac{\partial A(\mathit{\boldsymbol{E}})}{\partial (\mathit{\boldsymbol{E}})}\cdot \nabla +\mathit{\boldsymbol{f}} \right]\ }\rm{d}V+ \\
& \ \ \ \ \ \ \ \ \ \ \ \iint\limits_{{{S}_{\sigma }}}{\left[ (\mathit{\boldsymbol{I}}+\mathit{\boldsymbol{u}}\nabla )\cdot \frac{\partial A(\mathit{\boldsymbol{E}})}{\partial (\mathit{\boldsymbol{E}})}\cdot \mathit{\boldsymbol{n}}-\mathit{\boldsymbol{T}} \right]}\ \rm{d}\mathit{S}。 \\
\end{align}
$
|
(91) |
将相关各式代入Lagrange方程, 可得
$
\begin{align}
& \ \ \ \frac{\rm{d}}{\rm{d}t}\frac{\partial T}{\partial \mathit{\boldsymbol{v}}}-\frac{\partial T}{\partial \mathit{\boldsymbol{u}}}+\frac{\partial U}{\partial \mathit{\boldsymbol{u}}} \\
& =\iiint\limits_{V}{\left[ \rho \mathit{\boldsymbol{\dot{v}}}-(\mathit{\boldsymbol{I}}+\mathit{\boldsymbol{u}}\nabla )\cdot \frac{\partial A(\mathit{\boldsymbol{E}})}{\partial (\mathit{\boldsymbol{E}})}\cdot \nabla -\mathit{\boldsymbol{f}} \right]\rm{d}V}+ \\
& \ \ \ \iint\limits_{{{S}_{\sigma }}}{\left[ (\mathit{\boldsymbol{I}}+\mathit{\boldsymbol{u}}\nabla )\cdot \frac{\partial A(\mathit{\boldsymbol{E}})}{\partial (\mathit{\boldsymbol{E}})}\cdot \mathit{\boldsymbol{n}}-\mathit{\boldsymbol{T}} \right]}\ \rm{d}\mathit{S}=0。 \\
\end{align}
$
|
(92) |
去掉积分号, 可得弹性动力学方程:
$
\rho \mathit{\boldsymbol{\dot{v}}}-(\mathit{\boldsymbol{I}}+\mathit{\boldsymbol{u}}\nabla )\cdot \frac{\partial A(\mathit{\boldsymbol{E}})}{\partial (\mathit{\boldsymbol{E}})}\cdot \nabla -\mathit{\boldsymbol{f}}=\bf{0},
$
|
(93) |
$
(\mathit{\boldsymbol{I}}+\mathit{\boldsymbol{u}}\nabla )\cdot \frac{\partial A(\mathit{\boldsymbol{E}})}{\partial (\mathit{\boldsymbol{E}})}\cdot \mathit{\boldsymbol{n}}-\mathit{\boldsymbol{T}}=\bf{0}\ 。
$
|
(94) |
3.3 算例
非线性弹性直梁也是工程结构中的重要构件, 亦可以单独组成一个工程结构。将Lagrange方程应用于非线性弹性直梁的动力学问题, 也具有一定的代表性。这里讨论非线性弹性Bernoulli直梁的动力学问题。
非线性弹性直梁的动能表示为
$
T=\int_{0}^{l}{\left[ \frac{1}{2}\rho A{{\left( \frac{\partial w}{\partial t} \right)}^{2}}+\frac{1}{2}\rho A{{\left( \frac{\partial u}{\partial t} \right)}^{2}} \right]}\ \text{d}x。
$
|
(95) |
非线性弹性直梁的势能包括三部分。第一部分为梁的应变能:
${{U}_{1}}=\int_{0}^{l}{\frac{1}{2}EI{{\left( \frac{{{\partial }^{2}}w}{\partial {{x}^{2}}} \right)}^{2}}\text{d}x}。$
|
(96) |
第二部分是轴向拉力的势能, 包括拉伸应变能和拉弯耦合势能:
${{U}_{2}}=\int_{0}^{l}{\frac{1}{2}EA{{\left( \frac{\partial u}{\partial x} \right)}^{2}}\text{d}x},$
|
(97) |
${{U}_{3}}=\int_{0}^{l}{\frac{1}{2}EA\left[ \frac{\partial u}{\partial x}{{\left( \frac{\partial w}{\partial x} \right)}^{2}}+\frac{1}{4}{{\left( \frac{\partial w}{\partial x} \right)}^{4}} \right]\text{d}x}。$
|
(98) |
第三部分为横向分布载荷的势能:
${{U}_{4}}=-\int_{0}^{l}{qw\text{d}x}。$
|
(99) |
总势能为
$
\begin{align}
& U={{U}_{1}}+{{U}_{2}}+{{U}_{3}}+{{U}_{4}} \\
& \ \ \ =\int_{0}^{l}{\left[ \frac{1}{2}EI{{\left( \frac{{{\partial }^{2}}w}{\partial {{x}^{2}}} \right)}^{2}}+\frac{1}{2}EA{{\left( \frac{\partial u}{\partial x} \right)}^{2}}+ \right.}\ \\
& \left. \ \ \ \ \ \frac{1}{2}EA\frac{\partial u}{\partial x}{{\left( \frac{\partial w}{\partial x} \right)}^{2}}+\frac{1}{2}EA\frac{1}{4}{{\left( \frac{\partial w}{\partial x} \right)}^{4}}-qw \right]\text{d}x\ 。 \\
\end{align}
$
|
(100) |
其中, w为梁的挠度, u为梁的轴向变形, E为梁的弹性模量, A为梁的横截面积, I为梁的抗弯截面系数, r为质量密度, q为分布载荷。
设为悬臂梁, 位移边界条件为
${{\left. w \right|}_{x=0}}=0,\ \ {{\left. \frac{\partial w}{\partial x} \right|}_{x=0}}=0,\ \ {{\left. u \right|}_{x=0}}=0,$
|
(101) |
Lagrange方程表示为
$
\frac{\text{d}}{\text{d}t}\frac{\partial T}{\partial \dot{w}}-\frac{\partial T}{\partial w}+\frac{\partial U}{\partial w}=0,
$
|
(102) |
$
\frac{\text{d}}{\text{d}t}\frac{\partial T}{\partial \dot{u}}-\frac{\partial T}{\partial u}+\frac{\partial U}{\partial u}=0,
$
|
(103) |
推导计算Lagrange方程中的各项:
$
\frac{\partial T}{\partial w}=0,
$
|
(104) |
$
\frac{\partial T}{\partial u}=0,
$
|
(105) |
$
\frac{\text{d}}{\text{d}t}\frac{\partial T}{\partial \dot{w}}=\frac{\text{d}}{\text{d}t}\frac{\partial }{\partial \dot{w}}\int_{0}^{l}{\frac{1}{2}\rho A{{(\dot{w})}^{2}}\text{d}x}=\int_{0}^{l}{\rho A\ddot{w}\text{d}x},
$
|
(106) |
$
\frac{\text{d}}{\text{d}t}\frac{\partial T}{\partial \dot{u}}=\frac{\text{d}}{\text{d}t}\frac{\partial }{\partial \dot{u}}\int_{0}^{l}{\frac{1}{2}\rho A{{(\dot{u})}^{2}}\text{d}x}=\int_{0}^{l}{\rho A\ddot{u}\text{d}x}。
$
|
(107) |
势能的变导项的推导比较复杂:
$
\begin{align}
& \frac{\partial U}{\partial w}=\frac{\partial }{\partial w}\int_{0}^{l}{\left[ \frac{1}{2}EI{{\left( \frac{{{\partial }^{2}}w}{\partial {{x}^{2}}} \right)}^{2}}+\frac{1}{2}EA{{\left( \frac{\partial u}{\partial x} \right)}^{2}}+ \right.} \\
& \ \ \ \ \ \ \ \ \left. \frac{1}{2}EA\frac{\partial u}{\partial x}{{\left( \frac{\partial w}{\partial x} \right)}^{2}}+\frac{1}{2}EA\frac{1}{4}{{\left( \frac{\partial w}{\partial x} \right)}^{4}}-qw \right]\ \text{d}x, \\
\end{align}
$
|
(108) |
$
\begin{align}
& \frac{\partial U}{\partial u}=\frac{\partial }{\partial u}\int_{0}^{l}{\left[ \frac{1}{2}EI{{\left( \frac{{{\partial }^{2}}w}{\partial {{x}^{2}}} \right)}^{2}}+\frac{1}{2}EA{{\left( \frac{\partial u}{\partial x} \right)}^{2}}+ \right.} \\
& \ \ \ \ \ \ \ \ \left. \frac{1}{2}EA\frac{\partial u}{\partial x}{{\left( \frac{\partial w}{\partial x} \right)}^{2}}-qw \right]\ \text{d}x。 \\
\end{align}
$
|
(109) |
式(108)和(109)可以进一步表示为
$
\begin{align}
& \\
& \frac{\partial U}{\partial u}=\int_{0}^{l}{\left[ EI\left( \frac{{{\partial }^{2}}w}{\partial {{x}^{2}}} \right)\frac{\partial }{\partial w}\left( \frac{{{\partial }^{2}}w}{\partial {{x}^{2}}} \right)+EA\frac{\partial u}{\partial x}\left( \frac{\partial u}{\partial x} \right)\frac{\partial }{\partial w}\left( \frac{\partial w}{\partial x} \right) \right.} \\
& \left. \ \ \ \ \ \ \ \ \frac{1}{2}EA{{\left( \frac{\partial w}{\partial x} \right)}^{3}}\frac{\partial }{\partial w}\left( \frac{\partial w}{\partial x} \right)-q \right]\text{d}x, \\
\end{align}
$
|
(110) |
$
\frac{\partial U}{\partial u}=\int_{0}^{l}{\left[ EA\left( \frac{\partial u}{\partial x} \right)\frac{\partial }{\partial u}\left( \frac{\partial u}{\partial x} \right)+\frac{1}{2}\frac{\partial }{\partial u}\left( EA\frac{\partial u}{\partial x} \right){{\left( \frac{\partial w}{\partial x} \right)}^{2}} \right]\text{d}x}。
$
|
(111) |
应用Green定理:
$
\begin{align}
& \ \ \ \int_{0}^{l}{EI\left( \frac{{{\partial }^{2}}w}{\partial {{x}^{2}}} \right)\frac{\partial }{\partial w}\left( \frac{{{\partial }^{2}}w}{\partial {{x}^{2}}} \right)\text{d}x} \\
& =\left. EI\left( \frac{{{\partial }^{2}}w}{\partial {{x}^{2}}} \right)\frac{\partial }{\partial w}\left( \frac{\partial w}{\partial x} \right) \right|_{0}^{l}-\int_{0}^{l}{EI\left( \frac{{{\partial }^{3}}w}{\partial {{x}^{3}}} \right)\frac{\partial }{\partial w}\left( \frac{\partial w}{\partial x} \right)\text{d}x} \\
& =\left. EI\left( \frac{{{\partial }^{2}}w}{\partial {{x}^{2}}} \right)\frac{\partial }{\partial w}\left( \frac{\partial w}{\partial x} \right) \right|_{0}^{l}-EI\left( \frac{{{\partial }^{3}}w}{\partial {{x}^{3}}} \right)\frac{\partial }{\partial w}w\left| _{0}^{l} \right.+ \\
& \int_{0}^{l}{EI\left( \frac{{{\partial }^{4}}w}{\partial {{x}^{4}}} \right)\frac{\partial }{\partial w}w\text{d}x,} \\
\end{align}
$
|
(112) |
$
\begin{align}
& \int_{0}^{l}{EA\frac{\partial u}{\partial x}\left( \frac{\partial w}{\partial x} \right)\frac{\partial }{\partial w}\left( \frac{\partial w}{\partial x} \right)\text{d}x} \\
& =EA\frac{\partial u}{\partial x}\left( \frac{\partial w}{\partial x} \right)\frac{\partial }{\partial w}w\left| _{0}^{l} \right.-\int_{0}^{l}{\frac{\partial }{\partial x}\left( EA\frac{\partial u}{\partial x}\frac{\partial w}{\partial x} \right)\frac{\partial }{\partial w}w\text{d}x}, \\
\end{align}
$
|
(113) |
$
\begin{align}
& \int_{0}^{l}{\frac{1}{2}EA{{\left( \frac{\partial w}{\partial x} \right)}^{3}}\frac{\partial }{\partial w}\left| \frac{\partial w}{\partial x} \right|\text{d}x} \\
& =\frac{1}{2}EA{{\left( \frac{\partial w}{\partial x} \right)}^{3}}\frac{\partial }{\partial w}w\left| _{0}^{l} \right.-\int_{0}^{l}{\frac{\partial }{\partial x}\left[ \frac{1}{2}EA{{\left( \frac{\partial w}{\partial x} \right)}^{3}} \right]\frac{\partial }{\partial w}w\text{d}x}, \\
\end{align}
$
|
(114) |
$
\begin{align}
& \ \ \ \int_{0}^{l}{EA\left( \frac{\partial u}{\partial x} \right)\frac{\partial }{\partial u}\left( \frac{\partial u}{\partial x} \right)\text{d}x} \\
& =EA\left( \frac{\partial u}{\partial x} \right)\frac{\partial }{\partial u}u\left| _{0}^{l} \right.-\int_{0}^{l}{EA\frac{{{\partial }^{2}}u}{\partial {{x}^{2}}}\frac{\partial }{\partial u}u\text{d}x} \\
& =EA\frac{\partial u}{\partial x}\frac{\partial }{\partial u}u\left| _{0}^{l} \right.-\int_{0}^{l}{\frac{\partial }{\partial x}EA\frac{\partial u}{\partial x}\frac{\partial }{\partial u}u\text{d}x,} \\
\end{align}
$
|
(115) |
$
\begin{align}
& \int_{0}^{l}{\frac{1}{2}\frac{\partial }{\partial u}\left( EA\frac{\partial u}{\partial x} \right){{\left( \frac{\partial w}{\partial x} \right)}^{2}}\text{d}x} \\
& =\frac{1}{2}EA{{\left( \frac{\partial w}{\partial x} \right)}^{2}}\frac{\partial }{\partial u}u\left| _{0}^{l} \right.-\int_{0}^{l}{\frac{\partial }{\partial x}\left[ \frac{1}{2}EA{{\left( \frac{\partial w}{\partial x} \right)}^{2}} \right]\frac{\partial }{\partial u}u\text{d}x}\ 。 \\
\end{align}
$
|
(116) |
将式(112)~(116)代入式(110)和(111), 根据边界条件(式(101)), 并且考虑到在$l=x$处, $\frac{\partial }{\partial w}w, $$\frac{\partial }{\partial w}\left (\frac{\partial w}{\partial x} \right)$和$\frac{\partial }{\partial u}u$取定值, 可得
$
\begin{align}
& \frac{\partial U}{\partial w}=\int_{0}^{l}{\left\{ EI\frac{{{\partial }^{4}}w}{\partial {{x}^{4}}}-\frac{\partial }{\partial x}\left[ EA\frac{\partial u}{\partial x}\frac{\partial w}{\partial x}+\frac{1}{2}EA{{\left( \frac{\partial w}{\partial x} \right)}^{3}} \right]-q \right\}} \\
& \ \ \ \ \ \ \ \ \text{d}x+{{\left. EI\left( \frac{{{\partial }^{2}}w}{\partial {{x}^{2}}} \right)\frac{\partial }{\partial w}\left[ \frac{\partial w}{\partial x} \right] \right|}_{x=l}}-EI\left( \frac{{{\partial }^{3}}w}{\partial {{x}^{3}}} \right)\frac{\partial }{\partial w}w\left| _{x=l} \right.+ \\
& {{\left. \ \ \ \ \ \ \ EA\frac{\partial u}{\partial x}\left( \frac{\partial w}{\partial x} \right)\frac{\partial }{\partial w}w \right|}_{x=l}}+\ {{\left. \frac{1}{2}EA{{\left( \frac{\partial w}{\partial x} \right)}^{3}}\frac{\partial }{\partial w}w \right|}_{x=l}}, \\
\end{align}
$
|
(117) |
$
\begin{align}
& \frac{\partial U}{\partial u}=-\int_{0}^{l}{\frac{\partial }{\partial x}\left[ EA\frac{\partial u}{\partial x}+\frac{1}{2}EA{{\left( \frac{\partial w}{\partial x} \right)}^{2}} \right]\text{d}x+} \\
& {{\left. EA\frac{\partial u}{\partial x}\frac{\partial }{\partial u}u \right|}_{x=l}}+{{\left. \frac{1}{2}EA{{\left( \frac{\partial w}{\partial x} \right)}^{2}}\frac{\partial }{\partial u}u \right|}_{x=l}}。 \\
\end{align}
$
|
(118) |
将相关各式代入Lagrange方程, 可得
$
\begin{align}
& \ \ \ \frac{\text{d}}{\text{d}t}\frac{\partial T}{\partial \dot{w}}-\frac{\partial T}{\partial w}+\frac{\partial U}{\partial w} \\
& =\int_{0}^{l}{\left\{ \rho A\ddot{w}+EI\frac{{{\partial }^{4}}w}{\partial {{x}^{4}}}- \right.} \\
& \left. \ \ \ \frac{\partial }{\partial x}\left[ EA\frac{\partial u}{\partial x}\frac{\partial w}{\partial x}+\frac{1}{2}EA{{\left( \frac{\partial w}{\partial x} \right)}^{3}} \right]-q \right\}\ \text{d}x+ \\
& {{\left. \ \ \ EI\left( \frac{{{\partial }^{2}}w}{\partial {{x}^{2}}} \right)\frac{\partial }{\partial w}\left( \frac{\partial w}{\partial x} \right) \right|}_{x=l}}-{{\left. EI\left( \frac{{{\partial }^{3}}w}{\partial {{x}^{3}}} \right)\frac{\partial }{\partial w}w \right|}_{x=l}}+ \\
& {{\left. \ \ \ EA\frac{\partial u}{\partial x}\left( \frac{\partial w}{\partial x} \right)\frac{\partial }{\partial w}w \right|}_{x=l}}+{{\left. \frac{1}{2}EA{{\left( \frac{\partial w}{\partial x} \right)}^{3}}\frac{\partial }{\partial w}w \right|}_{x=l}}=0, \\
\end{align}
$
|
(119) |
$
\begin{align}
& \ \ \ \frac{\text{d}}{\text{d}t}\frac{\partial T}{\partial \dot{u}}-\frac{\partial T}{\partial u}+\frac{\partial U}{\partial u} \\
& =\int_{0}^{l}{\left\{ \rho A\ddot{u}-\frac{\partial }{\partial x}\left[ EA\frac{\partial u}{\partial x}+\frac{1}{2}EA{{\left( \frac{\partial w}{\partial x} \right)}^{2}} \right] \right\}\text{d}x}+ \\
& EA\frac{\partial u}{\partial x}\frac{\partial }{\partial u}u\left| _{x=l} \right.+{{\left. \frac{1}{2}EA{{\left( \frac{\partial w}{\partial x} \right)}^{2}}\frac{\partial }{\partial u}u \right|}_{x=l}}=0\ 。 \\
\end{align}
$
|
(120) |
去掉积分号, 可得弹性直梁的动力学方程和自然边界条件:
$
\rho A\ddot{w}+EI\frac{{{\partial }^{4}}w}{\partial {{x}^{4}}}-\frac{\partial }{\partial x}\left[ EA\frac{\partial u}{\partial x}+\frac{1}{2}EA{{\left( \frac{\partial w}{\partial x} \right)}^{2}} \right]\frac{\partial w}{\partial x}-q=\text{0},
$
|
(121) |
$
\rho A\ddot{u}-\frac{\partial }{\partial x}\left[ EA\frac{\partial u}{\partial x}+\frac{1}{2}EA{{\left( \frac{\partial w}{\partial x} \right)}^{2}} \right]=0,
$
|
(122) |
$
{{\left. EI\left( \frac{{{\partial }^{2}}w}{\partial {{x}^{2}}} \right) \right|}_{x=l}}=0,
$
|
(123) |
$
-EI\left( \frac{{{\partial }^{3}}w}{\partial {{x}^{3}}} \right)+{{\left. EA\left[ \frac{\partial u}{\partial x}\left( \frac{\partial w}{\partial x} \right)+\frac{1}{2}\left( \frac{{{\partial }^{3}}w}{\partial {{x}^{3}}} \right) \right] \right|}_{x=l}}=0,
$
|
(124) |
$
{{\left. EA\left[ \frac{\partial u}{\partial x}+\frac{1}{2}{{\left( \frac{\partial w}{\partial x} \right)}^{2}} \right] \right|}_{x=l}}=0。
$
|
(125) |
式(121)和(122)是域中的控制方程, 式(123)~(125)是力的边界条件。