北京大学学报自然科学版   2016, Vol. 52 Issue(4): 597-607

文章信息

冯晓九, 梁立孚
FENG Xiaojiu, LIANG Lifu
Lagrange方程应用于连续介质力学
Lagrange Equation Applied to Continuum Mechanics
北京大学学报(自然科学版), 2016, 52(4): 597-607
Acta Scientiarum Naturalium Universitatis Pekinensis, 2016, 52(4): 597-607

文章历史

收稿日期: 2015-10-23
修回日期: 2016-04-02
网络出版日期: 2016-07-14
Lagrange方程应用于连续介质力学
冯晓九1, 梁立孚2     
1. 常州大学环境与安全工程学院, 常州213164;
2. 哈尔滨工程大学航天与建筑工程学院, 哈尔滨 150001
摘要: 如何将Lagrange方程应用于连续介质力学, 一直是学术界关注的理论课题。应用变导的概念和运算法则, 研究Lagrange方程中的求导的性质, 进而将Lagrange方程应用于线性弹性动力学和非线性弹性动力学, 并且给出相应的算例。结果表明, 借鉴变积分学来解决将Lagrange方程应用于连续介质力学的问题是可行的。
关键词: 连续介质力学     Lagrange方程     变导     线性弹性动力学     非线性弹性动力学    
Lagrange Equation Applied to Continuum Mechanics
FENG Xiaojiu1, LIANG Lifu2     
1. School of Environmental and Safety Engineering, Changzhou University, Changzhou 213164;
2. College of Aerospace and Civil Engineering, Harbin Engineering University, Harbin 150001
Corresponding author: LIANG Lifu, E-mail: lianglifu@hrbeu.edu.cn
Abstract: How to apply the Lagrange equation to the continuous medium mechanics has been a theoretical issue of academic circles. Using variational derivative concepts and operational rules, the properties of variational derivative in Lagrange equation are studied. The Lagrange equation is applied to linear elastic dynamics and nonlinear elastic dynamics, and some corresponding numerical examples are given. The result shows that it is a feasible way to solve the problem of the application of Lagrange equation to the mechanics of continuous media by using the variational integral calculus.
Key words: continuum mechanics     Lagrange equation     variational derivative     linear elastic dynamics     nonlinear elastic dynamics    

1755年Lagrange的著作《Mecanique Analytique》(分析力学)问世[1](1788年首次正式出版), 力学发展史上出现了与牛顿的矢量力学并驾齐驱的一个力学体系。Lagrange力学体系的特点是用对能量和功的分析代替对力和力矩的分析。1834年Hamilton[2-3]建立了Hamilton原理和正则方程, 进一步发展了分析力学, 从而形成Lagrange体系和Hamilton体系。

如何将经典分析动力学应用于连续介质力学, 一直是各国学者关注的研究课题。

我国1958年出版的第一部分析力学专著《分析动力学》[4], 注意到将分析力学从质点刚体力学扩展到连续介质力学、从离散系统扩展到连续系统的问题。2015年影印的《Classical Mechanics》[5]仍然研究连续体分析动力学。一些学者成功地将Lagrange方程应用于机构动力学分析[6-9]、振动系统[10]、防护工程[11]、电器系统和机电系统[12]等领域, 也有学者研究如何将Lagrange方程应用于非惯性系统[13-15], 以及弹性力学的Lagrange形式、弹性介质的Lagrange动力学和精确Cosserat弹性杆动力学的分析力学方法[16-18]。另有一些学者研究完整系统三阶Lagrange方程、状态空间Lagrange函数和运动方程[19-20]以及关于Birkhoff方程和Lagrange方程分析力学问题[21]

在一定的意义上, Lagrange方程和Hamilton原理都涉及变分学, 而Lagrange作为变分学的奠基人之一, 研究的就是基于变分学的基本理论, 所以借鉴变分学或许是一条可行的途径。Liang等[22]提出变分的逆运算变积概念, 建立变积方法, 然后应用变积方法, 建立一般力学三类变量的广义变分原理[23]。刘高联先生充分肯定了变积方法的首创性[24]。以上研究使微积分学中的积分、微分和导数在变分学中有了对应的概念--变积、变分和变导, 初步地将变分学扩充为变积分学。

本文基于陈滨[25]关于Lagrange力学完整的叙述, 应用变导的概念和运算法则, 研究Lagrange方程中求导的性质, 逐步将Lagrange方程应用于线性弹性动力学, 进而应用于非线性弹性动力学, 并且给出相关的算例, 对理论研究进行验证。

1 Lagrange方程中的导数的性质

首先, 明确变导的概念。设有定积分形式的泛函为

$ V = \int_a^b {F(x,y,y'){\rm{d}}x}, $ (1)

边界条件为

$ {y_{x = a}} = \alpha ,\quad {y_{x = b}} = \beta , $ (2)

其中, $y (x)$为自变函数, $x$为自变量。

对式(1)进行变分运算可得

$ {\rm{\delta }}V = \int_a^b {\left( {\frac{{\partial F}}{{\partial y}}{\rm{\delta }}y + \frac{{\partial F}}{{\partial y'}}{\rm{\delta }}y'} \right)} \;{\rm{d}}x。 $ (3)

应用分部积分:

$ \int_a^b {\frac{{\partial F}}{{\partial y'}}{\rm{\delta }}y'} {\rm{d}}x = \frac{{\partial F}}{{\partial y'}}\left. {{\rm{\delta }}y} \right|_a^b - \int_a^b {\frac{{\rm{d}}}{{{\rm{d}}x}}\frac{{\partial F}}{{\partial y'}}{\rm{\delta }}y} {\rm{d}}x。 $ (4)

将式(4)代入式(3), 考虑到边界条件(式(2)), 整理得

$ {\rm{\delta }}V = \int_a^b {\left( {\frac{{\partial F}}{{\partial y}} - \frac{{\rm{d}}}{{{\rm{d}}x}}\frac{{\partial F}}{{\partial y'}}} \right)\;} {\rm{\delta }}y{\rm{d}}x。 $ (5)

由于${\rm{\delta }}y$的任意性, 式(5)可以变换为

$ \frac{{{\rm{\delta }}V}}{{{\rm{\delta }}y}} = \int_a^b {\left( {\frac{{\partial F}}{{\partial y}} - \frac{{\rm{d}}}{{{\rm{d}}x}}\frac{{\partial F}}{{\partial y'}}} \right)} \;{\rm{d}}x。 $ (6)

在微分学中, 函数的微分表示为${\rm{d}}y$, 自变量的微分表示为${\rm{d}}x$, 微商表示为$\frac{{{\rm{d}}y}}{{{\rm{d}}x}}$, 又称导数。在变分学中, 泛函的变分表示为$ {\rm{\delta }}V$, 自变函数的变分表示为${\rm{\delta }}y$, 变商表示为$\frac{{{\rm{\delta }}V}}{{{\rm{\delta }}y}}$, 又称变导。

经典分析动力学中的Lagrange方程表示为

$ \frac{{\rm{d}}}{{{\rm{d}}t}}\frac{{\partial T}}{{\partial \mathit{\boldsymbol{\dot q}}}} - \frac{{\partial T}}{{\partial \mathit{\boldsymbol{q}}}} + \frac{{\partial U}}{{\partial \mathit{\boldsymbol{q}}}} = 0, $ (7)

其中, $\mathit{\boldsymbol{q}}=\mathit{\boldsymbol{q}}{\rm{(}}t{\rm{)}}$为广义坐标, 一般分析动力学中均将其处理为广义坐标列阵:

$ \begin{array}{l} {[{q_1}{\rm{(}}t{\rm{)}},\;\;{q_2}{\rm{(}}t{\rm{)}},\;\;{q_3}{\rm{(}}t{\rm{)}},\;\;...,\;\;{q_i}{\rm{(}}t{\rm{)}},\;\;...{q_n}{\rm{(}}t{\rm{)}}]^{\rm{T}}}\;\;\\ \;\;\;\;\;\;\;\;\;\;(i = 1,\;2,\;3,\;...i,\;...,\;n)。 \end{array} $ (8)

在变分学中, 基本上存在三级变量--自变量、可变函数和泛函。简单函数和泛函的区别在于, 简单函数是自变量的函数, 而泛函是可变函数的函数, 独立自主地变化的可变函数称为自变函数。从不独立的可变函数也是自变函数的函数的角度看问题, 不独立的可变函数也是泛函, 可称其为子泛函。明确变分学中的三级变量, 对区分微积分中的导数和变积分学中的变导很有帮助。对自变量求导为微积分中的导数, 对可变函数的求导则为变积分中的变导。

在Lagrange方程中, 有4个求导运算: $\frac{{\partial T}}{{\partial \mathit{\boldsymbol{\dot q}}}}, $$\frac{{\partial T}}{{\partial \mathit{\boldsymbol{q}}}}, $$\frac{{\partial U}}{{\partial \mathit{\boldsymbol{q}}}}$$\frac{{\rm{d}}}{{{\rm{d}}t}}\frac{{\partial T}}{{\partial \mathit{\boldsymbol{\dot q}}}}$。一般情况, $\mathit{\boldsymbol{\dot q}}$$\mathit{\boldsymbol{q}}$均为可变函数, 所以$\frac{{\partial T}}{{\partial \mathit{\boldsymbol{\dot q}}}}$, $\frac{{\partial T}}{{\partial \mathit{\boldsymbol{q}}}}$$\frac{{\partial U}}{{\partial \mathit{\boldsymbol{q}}}}$均为变积分学中变导; 时间t为自变量, 所以$\frac{{\rm{d}}}{{{\rm{d}}t}}\frac{{\partial T}}{{\partial \mathit{\boldsymbol{\dot q}}}}$中对时间t求导为微积分学中的导数。

严格地说, 变导$\frac{{\partial T}}{{\partial \mathit{\boldsymbol{\dot q}}}}$, $\frac{{\partial T}}{{\partial \mathit{\boldsymbol{q}}}}, $$\frac{{\partial U}}{{\partial \mathit{\boldsymbol{q}}}}$$\frac{{\rm{d}}}{{{\rm{d}}t}}\frac{{\partial T}}{{\partial \mathit{\boldsymbol{\dot q}}}}$应写为$\frac{{{\rm{ \mathsf{ δ} }}T}}{{{\rm{ \mathsf{ δ} }}\mathit{\boldsymbol{\dot q}}}}$, $\frac{{{\rm{ \mathsf{ δ} }}T}}{{{\rm{ \mathsf{ δ} }}\mathit{\boldsymbol{q}}}}$, $\frac{{{\rm{ \mathsf{ δ} }}U}}{{{\rm{ \mathsf{ δ} }}\mathit{\boldsymbol{q}}}}$$\frac{{\rm{d}}}{{{\rm{d}}t}}\frac{{{\rm{ \mathsf{ δ} }}T}}{{{\rm{ \mathsf{ δ} }}\mathit{\boldsymbol{\dot q}}}}$。但是, 考虑到目前分析力学界的习惯, 可仍然沿用原来的符号:变分符号用δ, 变导符号用$\frac{\partial }{\partial }$

Lagrange已经注意到微分符号用d而变分符号用δ, 而且应用了符号$\frac{{\rm{\delta }}}{{\rm{\delta }}}$, 所以变导的概念已经隐含在其著作中。例如, 在文献[1]中, Lagrange方程表示为

$ {\rm{d}}\frac{{{\rm{\delta }}T}}{{{\rm{\delta }}\dot \xi }} - \frac{{{\rm{\delta }}T}}{{{\rm{\delta }}\xi }} + \frac{{{\rm{\delta }}U}}{{{\rm{\delta }}\xi }} = 0。 $ (9)

需要说明, Lagrange将$\frac{{\rm{d}}}{{{\rm{d}}t}}\frac{{{\rm{ \mathsf{ δ} }}T}}{{{\rm{ \mathsf{ δ} }}\mathit{\boldsymbol{\dot q}}}}$表示为${\rm{d}}\frac{{{\rm{\delta }}T}}{{{\rm{\delta }}\dot \xi }}$, 应用了微分符号d, 而没有应用求导符号$\frac{{\rm{d}}}{{{\rm{d}}t}}$

如果将$\xi $表示为$\mathit{\boldsymbol{q}}$, 将d表示为$\frac{{\rm{d}}}{{{\rm{d}}t}}$, 则式(9)可以表示为

$ \frac{{\rm{d}}}{{{\rm{d}}t}}\frac{{{\rm{ \mathsf{ δ} }}T}}{{{\rm{ \mathsf{ δ} }}\mathit{\boldsymbol{\dot q}}}} - \frac{{{\rm{ \mathsf{ δ} }}T}}{{{\rm{ \mathsf{ δ} }}\mathit{\boldsymbol{q}}}} + \frac{{{\rm{ \mathsf{ δ} }}U}}{{{\rm{ \mathsf{ δ} }}\mathit{\boldsymbol{q}}}} = 0。 $ (10)

按照目前的习惯, 将变导$\frac{{\rm{\delta }}}{{\rm{\delta }}}$表示为$\frac{\partial }{\partial }$, 则式(10)就变换为式(7)。

变积分学中变导与微积分学中导数的运算法则, 有时相同, 有时不同, 在后面研究具体问题时可以明显地表现出来。

2 Lagrange方程应用于线性弹性动力学 2.1 一类变量Lagrange方程应用于线性弹性动力学

线性弹性动力学的动能表示为

$ T=\iiint\limits_{V}{\frac{1}{2}\rho \mathit{\boldsymbol{\dot{u}}}\cdot \mathit{\boldsymbol{\dot{u}}}\rm{d}V}。 $ (11)

线性弹性动力学的势能表示为

$ \begin{align} & U={{U}_{1}}+{{U}_{2}} \\ & \ \ \ =\iiint\limits_{V}{\left[ \frac{1}{2}\left( \frac{1}{2}\nabla \mathit{\boldsymbol{u}}+\frac{1}{2}\mathit{\boldsymbol{u}}\nabla \right):\ \mathit{\boldsymbol{a}}:\left( \frac{1}{2}\nabla \mathit{\boldsymbol{u}}+\frac{1}{2}\mathit{\boldsymbol{u}}\nabla \right)- \right.\ } \\ & \ \ \ \left. \mathit{\boldsymbol{f}}\cdot \mathit{\boldsymbol{u}} \right]\ \rm{d}V-\iint\limits_{{{S}_{\sigma }}}{\mathit{\boldsymbol{T}}\cdot \mathit{\boldsymbol{u}}}\ \rm{d}S, \\ \end{align} $ (12)

其中, a为刚度系数张量, u为位移矢量, f为体力矢量, T为面力矢量, n为外法向矢量, $\nabla $为Hamilton算子, r为质量密度, Ss为力学边界面, Su为位移边界面, V为空间体积域。${{U}_{1}}=\iiint\limits_{V}{\left[ \frac{1}{2}\left (\frac{1}{2}\nabla \mathit{\boldsymbol{u}}+\frac{1}{2}\mathit{\boldsymbol{u}}\nabla \right): \right.}$ $\left. \mathit{\boldsymbol{a}}:\left (\frac{1}{2}\nabla \mathit{\boldsymbol{u}}+\frac{1}{2}\mathit{\boldsymbol{u}}\nabla \right) \right]\rm{d}V$为弹性体的应变能; U2=$\iiint\limits_{V}{-}\mathit{\boldsymbol{f}}\cdot \mathit{\boldsymbol{u}}\rm{d}V-\iint\limits_{{{S}_{\sigma }}}{\mathit{\boldsymbol{T}}\cdot \mathit{\boldsymbol{u}}}\rm{d}S$为外力势能。

位移边界条件为

$ \mathit{\boldsymbol{u}}-\mathit{\boldsymbol{ }}\!\!\bar{\mathit{\boldsymbol{u}}}\!\!\rm{ }=\boldsymbol{0}。 $ (13)

Lagrange方程表示为

$ \frac{\text{d}}{\text{d}t}\frac{\partial T}{\partial \mathit{\boldsymbol{u}}}-\frac{\partial T}{\partial \mathit{\boldsymbol{u}}}+\frac{\partial U}{\partial \mathit{\boldsymbol{u}}}=0。 $ (14)

推导计算Lagrange方程中的各项:

$ \frac{\partial T}{\partial \mathit{\boldsymbol{u}}}=0, $ (15)
$ \frac{\rm{d}}{\rm{d}t}\frac{\partial T}{\partial \mathit{\boldsymbol{\dot{u}}}}=\frac{\rm{d}}{\rm{d}t}\frac{\partial }{\partial \mathit{\boldsymbol{\dot{u}}}}\iiint\limits_{V}{\frac{1}{2}\rho \mathit{\boldsymbol{\dot{u}}}\cdot \mathit{\boldsymbol{\dot{u}}}\rm{d}V}=\iiint\limits_{V}{\rho \mathit{\boldsymbol{\ddot{u}}}\rm{d}V}。 $ (16)

势能变导项的推导比较复杂:

$ \begin{align} & \frac{\partial U}{\partial \mathit{\boldsymbol{u}}}=\frac{\partial }{\partial \mathit{\boldsymbol{u}}}\left\{ \iiint\limits_{V}{\left[ \frac{1}{2}\left( \frac{1}{2}\nabla \mathit{\boldsymbol{u}}+\frac{1}{2}\mathit{\boldsymbol{u}}\nabla \right):\ \mathit{\boldsymbol{a}}: \right.} \right. \\ & \left. \left. \ \ \ \ \ \ \ \ \left( \frac{1}{2}\nabla \mathit{\boldsymbol{u}}+\frac{1}{2}\mathit{\boldsymbol{u}}\nabla \right)-\mathit{\boldsymbol{f}}\cdot \mathit{\boldsymbol{u}} \right]\rm{d}V-\iint\limits_{{{S}_{\sigma }}}{\mathit{\boldsymbol{T}}\cdot \mathit{\boldsymbol{u}}}\ \rm{d}S \right\}, \\ \end{align} $ (17)
$ \begin{align} & \frac{\partial U}{\partial \mathit{\boldsymbol{u}}}=\iiint\limits_{V}{\left\{ \frac{\partial }{\partial \mathit{\boldsymbol{u}}}\left[ \frac{1}{2}\left( \frac{1}{2}\nabla \mathit{\boldsymbol{u}}+\frac{1}{2}\mathit{\boldsymbol{u}}\nabla \right):\ \mathit{\boldsymbol{a}}:\ \right. \right.}\left( \frac{1}{2}\nabla \mathit{\boldsymbol{u}}+ \right. \\ & \ \ \ \ \ \ \ \ \left. \left. \left. \frac{1}{2}\mathit{\boldsymbol{u}}\nabla \right) \right]-\mathit{\boldsymbol{f}} \right\}\rm{d}V-\iint\limits_{{{S}_{\sigma }}}{\mathit{\boldsymbol{T}}}\rm{d}S。 \\ \end{align} $ (18)

由于

$ \begin{align} & \iiint\limits_{V}{\frac{\partial }{\partial \mathit{\boldsymbol{u}}}\left[ \frac{1}{2}\left( \frac{1}{2}\nabla \mathit{u}+\frac{1}{2}\mathit{u}\nabla \right):\ \mathit{a}:\left( \frac{1}{2}\nabla \mathit{\boldsymbol{u}}+\frac{1}{2}\mathit{\boldsymbol{u}}\nabla \right) \right]\ } \\ & =\iiint\limits_{V}{\mathit{\boldsymbol{a}}:\ \left( \frac{1}{2}\nabla \mathit{\boldsymbol{u}}+\frac{1}{2}\mathit{\boldsymbol{u}}\nabla \right)}:\ \frac{\partial }{\partial \mathit{\boldsymbol{u}}}\mathit{\boldsymbol{u}}\nabla \rm{d}\mathit{V}, \\ \end{align} $ (19)

应用Green定理:

$ \begin{align} & \ \ \ \ \iiint\limits_{V}{\left[ \left( \frac{1}{2}\nabla \mathit{\pmb{u}}+\frac{1}{2}\mathit{\pmb{u}}\nabla \right):\ \mathrm{a}:\frac{\partial }{\partial \mathit{\pmb{u}}}\mathit{\pmb{u}}\nabla \right]}\ \text{d}V \\ & =\iint\limits_{{{S}_{\sigma }}+{{S}_{u}}}{\left( \frac{1}{2}\nabla \mathit{\pmb{u}}+\frac{1}{2}\mathit{\pmb{u}}\nabla \right):\mathrm{a}\cdot \mathrm{n}\text{d}S}- \\ & \ \ \ \iiint\limits_{V}{\nabla \cdot \left[ \left( \frac{1}{2}\nabla \mathit{\pmb{u}}+\frac{1}{2}\mathit{\pmb{u}}\nabla \right):\ \mathrm{a} \right]\text{d}V,} \\ \end{align} $ (20)

将式(19)和(20)代入式(18), 则得

$ \begin{align} & \frac{\partial U}{\partial \mathit{\boldsymbol{u}}}=-\iiint\limits_{V}{\left\{ \nabla \cdot \left[ \frac{1}{2}(\nabla \mathit{\boldsymbol{u}}+\mathit{\boldsymbol{u}}\nabla ):\ \mathit{\boldsymbol{a}} \right]+\mathit{\boldsymbol{f}} \right\}}\ \rm{d}V+ \\ & \iint\limits_{{{S}_{\sigma }}}{\left[ \left( \frac{1}{2}\nabla \mathit{\boldsymbol{u}}+\frac{1}{2}\mathit{\boldsymbol{u}}\nabla \right):\ \mathit{\boldsymbol{a}}\cdot \mathit{\boldsymbol{n}}-\mathit{\boldsymbol{T}} \right]}\ \rm{d}S。 \\ \end{align} $ (21)

将相关各式代入Lagrange方程, 可得

$ \begin{align} & \ \ \ \frac{\rm{d}}{\rm{d}t}\frac{\partial T}{\partial \mathit{\boldsymbol{\dot{u}}}}-\frac{\partial T}{\partial \mathit{\boldsymbol{u}}}+\frac{\partial U}{\partial \mathit{\boldsymbol{u}}} \\ & =\iiint\limits_{V}{\left\{ \rho \mathit{\boldsymbol{\ddot{u}}}-\nabla \cdot \left[ \frac{1}{2}(\nabla \mathit{\boldsymbol{u}}+\mathit{\boldsymbol{u}}\nabla ):\ \mathit{\boldsymbol{a}} \right]-\mathit{\boldsymbol{f}} \right\}\rm{d}V}+ \\ & \ \ \ \iint\limits_{{{S}_{\sigma }}}{\left[ \left( \frac{1}{2}\nabla \mathit{\boldsymbol{u}}+\frac{1}{2}\mathit{\boldsymbol{u}}\nabla \right):\mathit{\boldsymbol{a}}\cdot \mathit{\boldsymbol{n}}-\mathit{\boldsymbol{T}} \right]}\rm{d}S=0。 \\ \end{align} $ (22)

去掉积分号, 可得弹性动力学方程:

$ \rho \mathit{\boldsymbol{\ddot{u}}}-\nabla \cdot \left[ \frac{1}{2}(\nabla \mathit{\boldsymbol{u}}+\mathit{\boldsymbol{u}}\nabla ):\ \mathit{\boldsymbol{a}} \right]-\mathit{\boldsymbol{f}}=\bf{0}, $ (23)
$ \left( \frac{1}{2}\nabla \mathit{\boldsymbol{u}}+\frac{1}{2}\mathit{\boldsymbol{u}}\nabla \right):\ \mathit{\boldsymbol{a}}\cdot \mathit{\boldsymbol{n}}-\mathit{\boldsymbol{T}}=\bf{0}, $ (24)

先决条件为式(13)。

2.2 两类变量Lagrange方程应用于线性弹性动力学

两类变量Lagrange方程表示为

$ \frac{\rm{d}}{\rm{d}t}\frac{\partial T}{\partial \mathit{\boldsymbol{v}}}-\frac{\partial T}{\partial \mathit{\boldsymbol{u}}}+\frac{\partial U}{\partial \mathit{\boldsymbol{u}}}=0, $ (25)

弹性动力学的动能表示为

$ T=\iiint\limits_{V}{\frac{1}{2}\rho \mathit{\boldsymbol{v}}\cdot \mathit{\boldsymbol{v}}\rm{d}V}, $ (26)

弹性动力学的势能表示为

$ \begin{align} & U={{U}_{1}}+{{U}_{2}} \\ & \ \ \ =\iiint\limits_{V}{(\frac{1}{2}\mathit{\boldsymbol{ }}\!\!\varepsilon\!\!\rm{ }:\ \mathit{\boldsymbol{a}}:\mathit{\boldsymbol{ }}\!\!\varepsilon\!\!\rm{ }}-\mathit{\boldsymbol{f}}\cdot \mathit{\boldsymbol{u}})\rm{d}V-\iint\limits_{{{S}_{\sigma }}}{\mathit{\boldsymbol{T}}\cdot \mathit{\boldsymbol{u}}}\ \rm{d}S。 \\ \end{align} $ (27)

其中, ε为应变张量, v为速度适量, ${{U}_{1}}=$ $\iiint\limits_{V}{\frac{1}{2}\mathit{\boldsymbol{ }}\!\!\varepsilon\!\!\rm{ }:\ \mathit{\boldsymbol{a}}:\mathit{\boldsymbol{ }}\!\!\varepsilon\!\!\rm{ }}\rm{d}V$为弹性体的应变能, ${{U}_{2}}=$ $-\iiint\limits_{V}{\mathit{\boldsymbol{f}}\cdot \mathit{\boldsymbol{u}}\rm{d}V}-\iint\limits_{{{S}_{\sigma }}}{\mathit{\boldsymbol{T}}\cdot \mathit{\boldsymbol{u}}}\rm{d}S$为外力势能。先决条件为

$ \mathit{\boldsymbol{v}}-\mathit{\boldsymbol{\dot{u}}}=\bf{0}, $ (28)
$ \mathit{\boldsymbol{ }}\!\!\varepsilon\!\!\rm{ }-\frac{1}{2}\nabla \mathit{\boldsymbol{u}}-\frac{1}{2}\mathit{\boldsymbol{u}}\nabla =\bf{0}, $ (29)
$ \mathit{\boldsymbol{u}}-\mathit{\boldsymbol{ }}\!\!\bar{\mathit{\boldsymbol{u}}}\!\!\rm{ }=\bf{0} 。 $ (30)

推导计算Lagrange方程中的各项:

$ \frac{\partial T}{\partial \mathit{\boldsymbol{u}}}=0 , $ (31)
$ \frac{\rm{d}}{\rm{d}t}\frac{\partial T}{\partial \mathit{\boldsymbol{v}}}=\frac{\rm{d}}{\rm{d}t}\frac{\partial }{\partial \mathit{\boldsymbol{v}}}\iiint\limits_{V}{\frac{1}{2}\rho \mathit{\boldsymbol{v}}\cdot \mathit{\boldsymbol{v}}\rm{d}V}=\iiint\limits_{V}{\rho \mathit{\boldsymbol{\dot{v}}}\rm{d}V}。 $ (32)

势能变导项的推导比较复杂:

$ \frac{\partial U}{\partial \mathit{\boldsymbol{u}}}=\frac{\partial }{\partial \mathit{\boldsymbol{u}}}\left[ \iiint\limits_{V}{\left( \frac{1}{2}\mathit{\boldsymbol{ }}\!\!\varepsilon\!\!\rm{ }:\ \mathit{\boldsymbol{a}}:\mathit{\boldsymbol{ }}\!\!\varepsilon\!\!\rm{ }-\mathit{\boldsymbol{f}}\cdot \mathit{\boldsymbol{u}} \right)}\ \rm{d}V-\iint\limits_{{{S}_{\sigma }}}{\mathit{\boldsymbol{T}}\cdot \mathit{\boldsymbol{u}}\ }\rm{d}S \right], $ (33)
$ \begin{align} & \frac{\partial U}{\partial \mathit{\boldsymbol{u}}}=\iiint\limits_{V}{\left[ \frac{\partial }{\partial \mathit{\boldsymbol{u}}}\left( \frac{1}{2}\mathit{\boldsymbol{ }}\!\!\varepsilon\!\!\rm{ }:\ \mathit{\boldsymbol{a}}:\mathit{\boldsymbol{ }}\!\!\varepsilon\!\!\rm{ } \right)-\mathit{\boldsymbol{f}} \right]}\ \rm{d}V-\iint\limits_{{{S}_{\sigma }}}{\mathit{\boldsymbol{T}}}\rm{d}S \\ & =\iiint\limits_{V}{\left( (\mathit{\boldsymbol{ }}\!\!\varepsilon\!\!\rm{ }:\ \mathit{\boldsymbol{a}}:\frac{\partial \mathit{\boldsymbol{ }}\!\!\varepsilon\!\!\rm{ }}{\partial \mathit{\boldsymbol{u}}}-\mathit{\boldsymbol{f}} \right)}\ \rm{d}V-\iint\limits_{{{S}_{\sigma }}}{\mathit{\boldsymbol{T}}}\rm{d}S, \\ \end{align} $ (34)

考虑到

$ \rm{ }\!\!\delta\!\!\rm{ }\mathit{\boldsymbol{ }}\!\!\varepsilon\!\!\rm{ }-\rm{ }\!\!\delta\!\!\rm{ }\left( \frac{1}{2}\nabla \mathit{\boldsymbol{u}}+\frac{1}{2}\mathit{\boldsymbol{u}}\nabla \right)=\bf{0}, $ (35)
$ \delta \mathit{\boldsymbol{u}}=\bf{0},\left( 在{\mathit{{S}_{u}}}上 \right), $ (36)

利用刚度系数张量的对称性, 则有

$ \frac{\partial U}{\partial \mathit{\boldsymbol{u}}}=\iiint\limits_{V}{(\mathit{\boldsymbol{ }}\!\!\varepsilon\!\!\rm{ }:\ \mathit{\boldsymbol{a}}:\frac{\partial \nabla \mathit{\boldsymbol{u}}}{\partial \mathit{\boldsymbol{u}}}}-\mathit{\boldsymbol{f}})\rm{d}V-\iint\limits_{{{S}_{\sigma }}}{\mathit{\boldsymbol{T}}}\rm{d}S。 $ (37)

应用Green定理, 并考虑到式(36), 可得

$ \iiint\limits_{V}{\left( \mathit{\boldsymbol{ }}\!\!\varepsilon\!\!\rm{ }:\ \mathit{\boldsymbol{a}}:\frac{\partial \nabla \mathit{\boldsymbol{u}}}{\partial \mathit{\boldsymbol{u}}} \right)}\rm{d}V=\iint\limits_{{{S}_{\sigma }}}{\mathit{\boldsymbol{ }}\!\!\varepsilon\!\!\rm{ }:\ \mathit{\boldsymbol{a}}\cdot \mathit{\boldsymbol{n}}\rm{d}S}-\iiint\limits_{V}{\nabla \cdot (\mathit{\boldsymbol{ }}\!\!\varepsilon\!\!\rm{ }:\ \mathit{\boldsymbol{a}})\rm{d}V}。 $ (38)

将式(38)代入式(37), 则得

$ \begin{align} & \frac{\partial U}{\partial \mathit{\boldsymbol{u}}}=-\iiint\limits_{V}{[\nabla \cdot (\mathit{\boldsymbol{ }}\!\!\varepsilon\!\!\rm{ }:\ \mathit{\boldsymbol{a}})+\mathit{\boldsymbol{f}}]}\ \rm{d}V+ \\ & \ \ \ \ \ \ \ \ \ \iint\limits_{{{S}_{\sigma }}}{(\mathit{\boldsymbol{ }}\!\!\varepsilon\!\!\rm{ }:\ \mathit{\boldsymbol{a}}\cdot \mathit{\boldsymbol{n}}-\mathit{\boldsymbol{T}})\ }\rm{d}S\ 。 \\ \end{align} $ (39)

将相关各式代入Lagrange方程, 可得

$ \begin{align} & \frac{\rm{d}}{\rm{d}t}\frac{\partial T}{\partial \mathit{\boldsymbol{v}}}-\frac{\partial T}{\partial \mathit{\boldsymbol{u}}}+\frac{\partial U}{\partial \mathit{\boldsymbol{u}}}=\iiint\limits_{V}{\left[ \rho \frac{\rm{d}\mathit{\boldsymbol{v}}}{\rm{d}t}-\nabla \cdot (\mathit{\boldsymbol{ }}\!\!\varepsilon\!\!\rm{ }:\mathit{\boldsymbol{a}})-\mathit{\boldsymbol{f}} \right]\rm{d}V}+ \\ & \iint\limits_{{{S}_{\sigma }}}{(\mathit{\boldsymbol{ }}\!\!\varepsilon\!\!\rm{ }:\ \mathit{\boldsymbol{a}}\cdot \mathit{\boldsymbol{n}}-\mathit{\boldsymbol{T}})}\ \rm{d}S=\bf{0}, \\ \end{align} $ (40)

去掉积分号, 可得弹性动力学方程:

$ \rho \frac{\rm{d}\mathit{\boldsymbol{v}}}{\rm{d}t}-\nabla \cdot (\mathit{\boldsymbol{ }}\!\!\varepsilon\!\!\rm{ }:\ \mathit{\boldsymbol{a}})-\mathit{\boldsymbol{f}}=\bf{0}, $ (41)
$ \mathit{\boldsymbol{ }}\!\!\varepsilon\!\!\rm{ }:\ \mathit{\boldsymbol{a}}\cdot \mathit{\boldsymbol{n}}-\mathit{\boldsymbol{T}}=\bf{0}, $ (42)

先决条件为式(28), (29)和(30)。

2.3 算例

弹性平板是工程结构中的重要构件, 亦可以单独组成一个工程结构。将Lagrange方程应用于弹性平板的动力学比较有代表性。这里讨论线性弹性平板的动力学问题。

弹性平板的动能表示为

$ T=\iint{\frac{1}{2}}\rho h{{\left( \frac{\partial w}{\partial t} \right)}^{2}}\text{d}x\text{d}y。 $ (43)

弹性平板的势能包括两部分。第一部分为板的应变能:

$ \begin{align} & {{U}_{1}}=\iint{\frac{D}{2}\left\{ {{\left( \frac{{{\partial }^{2}}w}{\partial {{x}^{2}}}+\frac{{{\partial }^{2}}w}{\partial {{y}^{2}}} \right)}^{2}}- \right.}\ \\ & \left. \ \ \ \ \ 2(1-\mu )\left[ \frac{{{\partial }^{2}}w}{\partial {{x}^{2}}}\frac{{{\partial }^{2}}w}{\partial {{y}^{2}}}-{{\left( \frac{{{\partial }^{2}}w}{\partial x\partial y} \right)}^{2}} \right] \right\}\text{d}x\text{d}y; \\ \end{align} $ (44)

第二部分为横向分布载荷的势能:

$ {{U}_{2}}=\iint{-qw\text{d}x\text{d}y}。 $ (45)

总势能为

$ \begin{align} & U={{U}_{1}}+{{U}_{2}} \\ & \ \ \ =\iint{\frac{D}{2}\left\{ {{\left( \frac{{{\partial }^{2}}w}{\partial {{x}^{2}}}+\frac{{{\partial }^{2}}w}{\partial {{y}^{2}}} \right)}^{2}}- \right.\ }2(1-\mu )\left[ \frac{{{\partial }^{2}}w}{\partial {{x}^{2}}}\frac{{{\partial }^{2}}w}{\partial {{y}^{2}}}- \right. \\ & \ \ \ \ \left. \left. {{\left( \frac{{{\partial }^{2}}w}{\partial x\partial y} \right)}^{2}} \right] \right\}\ \text{d}x\text{d}y-\iint{qw\text{d}x\text{d}y}。 \\ \end{align} $ (46)

设为四边简支矩形板, 位移边界条件为

${{\left. w \right|}_{x=0}}=0,{{\left. w \right|}_{y=0}}=0,{{\left. w \right|}_{x=a}}=0,{{\left. w \right|}_{y=b}}=0,$ (47)

力学边界条件为

$ \left\{ \begin{align} & {{\left. \left( \frac{{{\partial }^{2}}w}{\partial {{x}^{2}}}+\mu \frac{{{\partial }^{2}}w}{\partial {{y}^{2}}} \right) \right|}_{x=0}}=0, \\ & {{\left. \left( \frac{{{\partial }^{2}}w}{\partial {{x}^{2}}}+\mu \frac{{{\partial }^{2}}w}{\partial {{y}^{2}}} \right) \right|}_{x=a}}=0, \\ & \left. \left( \frac{{{\partial }^{2}}w}{\partial {{y}^{2}}}+\mu \frac{{{\partial }^{2}}w}{\partial {{x}^{2}}} \right) \right|_{y=0}^{{}}=0, \\ & {{\left. \left( \frac{{{\partial }^{2}}w}{\partial {{y}^{2}}}+\mu \frac{{{\partial }^{2}}w}{\partial {{x}^{2}}} \right) \right|}_{y-b}}=0\ 。 \\ \end{align} \right. $ (48)

其中, w为板的挠度, D为板的抗弯刚度, h为板的厚度, m为泊松比, r为质量密度, q为分布载荷。

Lagrange方程表示为

$ \frac{\text{d}}{\text{d}t}\frac{\partial T}{\partial \dot{w}}-\frac{\partial T}{\partial w}+\frac{\partial U}{\partial w}=0。 $ (49)

推导计算Lagrange方程中的各项:

$ \frac{\partial T}{\partial w}=0, $ (50)
$ \frac{\text{d}}{\text{d}t}\frac{\partial T}{\partial \dot{w}}=\frac{\text{d}}{\text{d}t}\frac{\partial }{\partial \dot{w}}\iint{\frac{1}{2}}\rho h{{(\dot{w})}^{2}}\text{d}x\text{d}y=\iint{\rho h\ddot{w}\text{d}x\text{d}y}。 $ (51)

势能的变导项的推导比较复杂:

$ \begin{align} & \frac{\partial U}{\partial w}=\frac{\partial }{\partial w}\iint{\frac{D}{2}\left\{ {{\left( \frac{{{\partial }^{2}}w}{\partial {{x}^{2}}}+\frac{{{\partial }^{2}}w}{\partial {{y}^{2}}} \right)}^{2}}- \right.} \\ & \ \ \ \ \ \ \ \ \left. 2(1-\mu )\left[ \frac{{{\partial }^{2}}w}{\partial {{x}^{2}}}\frac{{{\partial }^{2}}w}{\partial {{y}^{2}}}-{{\left( \frac{{{\partial }^{2}}w}{\partial x\partial y} \right)}^{2}} \right] \right\}\ \text{d}x\text{d}y- \\ & \ \ \ \ \ \ \ \ \frac{\partial }{\partial w}\iint{qw\text{d}x\text{d}y,} \\ \end{align} $ (52)
$ \begin{align} & \frac{\partial U}{\partial w}=\int_{0}^{a}{\int_{0}^{b}{\left\{ D\left[ \left( \frac{{{\partial }^{2}}w}{\partial {{x}^{2}}}+\frac{{{\partial }^{2}}w}{\partial {{y}^{2}}} \right)\frac{\partial }{\partial w}\left( \frac{{{\partial }^{2}}w}{\partial {{x}^{2}}}+\frac{{{\partial }^{2}}w}{\partial {{y}^{2}}} \right)- \right. \right.}} \\ & \ \ \ \ \ \ \ \ (1-\mu )\left( \frac{{{\partial }^{2}}w}{\partial {{x}^{2}}}\frac{\partial }{\partial w}\frac{{{\partial }^{2}}w}{\partial {{y}^{2}}}+ \right.\frac{{{\partial }^{2}}w}{\partial {{y}^{2}}}\frac{\partial }{\partial w}\frac{{{\partial }^{2}}w}{\partial {{x}^{2}}}- \\ & \ \ \ \ \ \ \ \ \left. \left. \left. 2\frac{{{\partial }^{2}}w}{\partial x\partial y}\frac{\partial }{\partial w}\frac{{{\partial }^{2}}w}{\partial x\partial y} \right) \right]-q \right\}\text{d}x\text{d}y。 \\ \end{align} $ (53)

由于

$ \begin{align} & \int_{0}^{a}{\int_{0}^{b}{\left\{ D\left[ \left[ \frac{{{\partial }^{2}}w}{\partial {{x}^{2}}}+\frac{{{\partial }^{2}}w}{\partial {{y}^{2}}} \right]\frac{\partial }{\partial w}\left( \frac{{{\partial }^{2}}w}{\partial {{x}^{2}}}+\frac{{{\partial }^{2}}w}{\partial {{y}^{2}}} \right)- \right. \right.}}(1-\mu )\cdot \\ & \left( \frac{{{\partial }^{2}}w}{\partial {{x}^{2}}}\frac{\partial }{\partial w}\frac{{{\partial }^{2}}w}{\partial {{y}^{2}}}+ \right.\frac{{{\partial }^{2}}w}{\partial {{y}^{2}}}\frac{\partial }{\partial w}\frac{{{\partial }^{2}}w}{\partial {{x}^{2}}}-\ \left. \left. \left. 2\frac{{{\partial }^{2}}w}{\partial x\partial y}\frac{\partial }{\partial w}\frac{{{\partial }^{2}}w}{\partial x\partial y} \right) \right] \right\}\ \text{d}x\text{d}y \\ & =\int_{0}^{a}{\int_{0}^{b}{\left\{ D\left[ \frac{{{\partial }^{2}}w}{\partial {{x}^{2}}}\frac{\partial }{\partial w}\frac{{{\partial }^{2}}w}{\partial {{x}^{2}}}+\frac{{{\partial }^{2}}w}{\partial {{y}^{2}}}\frac{\partial }{\partial w}\frac{{{\partial }^{2}}w}{\partial {{y}^{2}}}+\mu \frac{{{\partial }^{2}}w}{\partial {{x}^{2}}}\frac{\partial }{\partial w}\frac{{{\partial }^{2}}w}{\partial {{y}^{2}}}+ \right. \right.}} \\ & \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \left. \left. \mu \frac{{{\partial }^{2}}w}{\partial {{y}^{2}}}\frac{\partial }{\partial w}\frac{{{\partial }^{2}}w}{\partial {{x}^{2}}}+2(1-\mu )\frac{{{\partial }^{2}}w}{\partial x\partial y}\frac{\partial }{\partial w}\frac{{{\partial }^{2}}w}{\partial x\partial y} \right] \right\}\ \text{d}x\text{d}y, \\ \end{align} $ (54)

应用Green定理:

$ \int_{0}^{a}{\int_{0}^{b}{\frac{{{\partial }^{2}}w}{\partial {{x}^{2}}}\frac{\partial }{\partial w}\frac{{{\partial }^{2}}w}{\partial {{x}^{2}}}}}\text{d}x\text{d}y=\int_{0}^{b}{\left. \frac{{{\partial }^{2}}w}{\partial {{x}^{2}}}\frac{\partial }{\partial w}\frac{\partial w}{\partial x} \right|_{0}^{a}}\text{d}y-\int_{0}^{b}{\left. \frac{{{\partial }^{3}}w}{\partial {{x}^{3}}}\frac{\partial }{\partial w}w \right|_{0}^{a}\text{d}y+}\int_{0}^{b}{\int_{0}^{a}{\frac{{{\partial }^{4}}w}{\partial {{x}^{4}}}\frac{\partial }{\partial w}w\text{d}x\text{d}y}}, $ (55)
$ \int_{0}^{a}{\int_{0}^{b}{\frac{{{\partial }^{2}}w}{\partial {{y}^{2}}}\frac{\partial }{\partial w}\frac{{{\partial }^{2}}w}{\partial {{y}^{2}}}}}\text{d}x\text{d}y=\int_{0}^{a}{\left. \frac{{{\partial }^{2}}w}{\partial {{y}^{2}}}\frac{\partial }{\partial w}\frac{\partial w}{\partial y} \right|_{0}^{b}}\text{d}x-\int_{0}^{a}{\left. \frac{{{\partial }^{3}}w}{\partial {{y}^{3}}}\frac{\partial }{\partial w}w \right|_{0}^{b}\text{d}x+}\int_{0}^{a}{\int_{0}^{b}{\frac{{{\partial }^{4}}w}{\partial {{y}^{4}}}\frac{\partial }{\partial w}w\text{d}x\text{d}y}}, $ (56)
$ \int_{0}^{a}{\int_{0}^{b}{\frac{{{\partial }^{2}}w}{\partial {{x}^{2}}}\frac{\partial }{\partial w}\frac{{{\partial }^{2}}w}{\partial {{y}^{2}}}}}\text{d}x\text{d}y=\int_{0}^{a}{\left. \frac{{{\partial }^{2}}w}{\partial {{x}^{2}}}\frac{\partial }{\partial w}\frac{\partial w}{\partial y} \right|_{0}^{b}}\text{d}x-\int_{0}^{a}{\left. \frac{{{\partial }^{3}}w}{\partial {{x}^{2}}\partial y}\frac{\partial }{\partial w}w \right|_{0}^{b}\text{d}x}+\int_{0}^{a}{\int_{0}^{b}{\frac{{{\partial }^{4}}w}{\partial {{x}^{2}}\partial {{y}^{2}}}\frac{\partial }{\partial w}w\text{d}x\text{d}y}}, $ (57)
$ \int_{0}^{a}{\int_{0}^{b}{\frac{{{\partial }^{2}}w}{\partial {{y}^{2}}}\frac{\partial }{\partial w}\frac{{{\partial }^{2}}w}{\partial {{x}^{2}}}}}\text{d}x\text{d}y=\int_{0}^{b}{\left. \frac{{{\partial }^{2}}w}{\partial {{y}^{2}}}\frac{\partial }{\partial w}\frac{\partial w}{\partial x} \right|_{0}^{a}}\text{d}y-\int_{0}^{b}{\left. \frac{{{\partial }^{3}}w}{\partial {{y}^{2}}\partial x}\frac{\partial }{\partial w}w \right|_{0}^{a}\text{d}y}+\int_{0}^{a}{\int_{0}^{b}{\frac{{{\partial }^{4}}w}{\partial {{x}^{2}}\partial {{y}^{2}}}\frac{\partial }{\partial w}w\text{d}x\text{d}y\ }}, $ (58)
$ \begin{align} & \int_{0}^{a}{\int_{0}^{b}{\frac{{{\partial }^{2}}w}{\partial x\partial y}\frac{\partial }{\partial w}\frac{{{\partial }^{2}}w}{\partial x\partial y}}}\text{d}x\text{d}y=\int_{0}^{a}{\left. \frac{{{\partial }^{2}}w}{\partial x\partial y}\frac{\partial }{\partial w}\frac{\partial w}{\partial x} \right|_{0}^{b}}\text{d}x- \\ & \int_{0}^{b}{\left. \frac{{{\partial }^{3}}w}{\partial x\partial {{y}^{2}}}\frac{\partial }{\partial w}w \right|_{0}^{a}\text{d}y+}\int_{0}^{a}{\int_{0}^{b}{\frac{{{\partial }^{4}}w}{\partial {{x}^{2}}\partial {{y}^{2}}}\frac{\partial }{\partial w}w\text{d}x\text{d}y}} \\ & =\left. \frac{{{\partial }^{2}}w(x,b)}{\partial x\partial y}\frac{\partial }{\partial w}w(x,b) \right|_{0}^{a}-\left. \frac{{{\partial }^{2}}w(x,0)}{\partial x\partial y}\frac{\partial }{\partial w}w(x,0) \right|_{0}^{a}- \\ & \ \ \ \int_{0}^{a}{\left. \frac{{{\partial }^{3}}w}{\partial {{x}^{2}}\partial y}\frac{\partial }{\partial w}w \right|_{0}^{b}\text{d}x}-\int_{0}^{b}{\left. \frac{{{\partial }^{3}}w}{\partial x\partial {{y}^{2}}}\frac{\partial }{\partial w}w \right|_{0}^{a}\text{d}y+}\int_{0}^{a}{\int_{0}^{b}{\frac{{{\partial }^{4}}w}{\partial {{x}^{2}}\partial {{y}^{2}}}\frac{\partial }{\partial w}w\text{d}x\text{d}y,}} \\ \end{align} $ (59)

将式(54)~(59)代入式(53), 考虑到式(47)和(48), 则

$ \frac{\partial U}{\partial w}=\int_{0}^{a}{\int_{0}^{b}{\left[ D\left( \frac{{{\partial }^{4}}w}{\partial {{x}^{4}}}+2\frac{{{\partial }^{4}}w}{\partial {{x}^{2}}\partial {{y}^{2}}}+\frac{{{\partial }^{4}}w}{\partial {{y}^{4}}} \right)-q \right]\text{d}x\text{d}y}}。 $ (60)

将相关各式代入Lagrange方程, 可得

$ \frac{\text{d}}{\text{d}t}\frac{\partial T}{\partial \dot{w}}-\frac{\partial T}{\partial w}+\frac{\partial U}{\partial w}=\int_{0}^{a}{\int_{0}^{b}{\left[ \rho h\ddot{w}+D\left( \frac{{{\partial }^{4}}w}{\partial {{x}^{4}}}+2\frac{{{\partial }^{4}}w}{\partial {{x}^{2}}\partial {{y}^{2}}}+\frac{{{\partial }^{4}}w}{\partial {{y}^{4}}} \right)-q \right]}}\ \text{d}x\text{d}y=0。 $ (61)

去掉积分号, 可得弹性动力学方程:

$ \rho h\ddot{w}+D\left( \frac{{{\partial }^{4}}w}{\partial {{x}^{4}}}+2\frac{{{\partial }^{4}}w}{\partial {{x}^{2}}\partial {{y}^{2}}}+\frac{{{\partial }^{4}}w}{\partial {{y}^{4}}} \right)-q=0。 $ (62)

位移边界条件为式(47), 力学边界条件为式(48), 都是强制边界条件。当然, 也可以将力学边界条件处理为自然边界条件, 这需要通过变导运算获得。

3 Lagrange方程应用于非线性弹性动力学 3.1 一类变量Lagrange方程应用于非线性弹性动力学

非线性弹性动力学的动能表示为

$ T=\iiint\limits_{V}{\frac{1}{2}\rho \mathit{\boldsymbol{\dot{u}}}\cdot \mathit{\boldsymbol{\dot{u}}}\rm{d}V}, $ (63)

非线性弹性动力学的势能表示为

$ \begin{align} & U={{U}_{1}}+{{U}_{2}} \\ & \ \ \ =\iiint\limits_{V}{\left[ A\left( \frac{1}{2}\nabla \mathit{\pmb{u}}+\frac{1}{2}\mathit{\pmb{u}}\nabla +\frac{1}{2}\nabla \mathit{\pmb{u}}\cdot \mathit{\pmb{u}}\nabla \right)-\mathit{\pmb{f}}\cdot \mathit{\pmb{u}} \right]}\text{d}V- \\ & \ \ \ \ \ \iint\limits_{{{S}_{\sigma }}}{\mathit{\pmb{T}}\cdot \mathit{\pmb{u}}}\text{d}S, \\ \end{align} $ (64)

其中, ${{U}_{1}}=\iiint\limits_{V}{A\left (\frac{1}{2}\nabla \mathit{\pmb{u}}+\frac{1}{2}\mathit{\pmb{u}}\nabla +\frac{1}{2}\nabla \mathit{\pmb{u}}\cdot \mathit{\pmb{u}}\nabla \right)}\ \text{d}V$为弹性体的应变能; ${{U}_{2}}=-\iiint\limits_{V}{\mathit{\pmb{f}}\cdot \mathit{\pmb{u}}\text{d}V}-\iint\limits_{{{S}_{\sigma }}}{\mathit{\pmb{T}}\cdot \mathit{\pmb{u}}}\text{d}S$为外力势能。

位移边界条件为

$ \mathit{\boldsymbol{u}}-\mathit{\boldsymbol{ }}\!\!\bar{\mathit{\boldsymbol{u}}}\!\!\rm{ }=\bf{0} 。 $ (65)

Lagrange方程表示为

$ \frac{\rm{d}}{\rm{d}t}\frac{\partial T}{\partial \mathit{\boldsymbol{\dot{u}}}}-\frac{\partial T}{\partial \mathit{\boldsymbol{u}}}+\frac{\partial U}{\partial \mathit{\boldsymbol{u}}}=0。 $ (66)

推导计算Lagrange方程中的各项:

$ \frac{\partial T}{\partial \mathit{\boldsymbol{u}}}=0, $ (67)
$ \frac{\rm{d}}{\rm{d}t}\frac{\partial T}{\partial \mathit{\boldsymbol{\dot{u}}}}=\frac{\rm{d}}{\rm{d}t}\frac{\partial }{\partial \mathit{\boldsymbol{\dot{u}}}}\iiint\limits_{V}{\frac{1}{2}\rho \mathit{\boldsymbol{\dot{u}\dot{u}}}\rm{d}V}=\iiint\limits_{V}{\rho \mathit{\boldsymbol{\ddot{u}}}\rm{d}\mathit{V}}。 $ (68)

势能变导项的推导比较复杂:

$ \frac{\partial U}{\partial \mathit{\boldsymbol{u}}}=\frac{\partial }{\partial \mathit{\boldsymbol{u}}}\left\{ \iiint\limits_{V}{\left[ A\left( \frac{1}{2}\nabla \mathit{\boldsymbol{u}}+\frac{1}{2}\mathit{\boldsymbol{u}}\nabla +\frac{1}{2}\nabla \mathit{\boldsymbol{u}}\cdot \mathit{\boldsymbol{u}}\nabla \right)-\mathit{\boldsymbol{f}}\cdot \mathit{\boldsymbol{u}} \right]}\ \rm{d}V \right.\left. -\iint\limits_{{{S}_{\sigma }}}{\mathit{\boldsymbol{T}}\cdot \mathit{\boldsymbol{u}}}\ \rm{d}S \right\}, $ (69)
$ \frac{\partial U}{\partial \mathit{\boldsymbol{u}}}=\iiint\limits_{V}{\left[ \frac{\partial }{\partial \mathit{\boldsymbol{u}}}A\left( \frac{1}{2}\nabla \mathit{\boldsymbol{u}}+\frac{1}{2}\mathit{\boldsymbol{u}}\nabla +\frac{1}{2}\nabla \mathit{\boldsymbol{u}}\cdot \mathit{\boldsymbol{u}}\nabla \right)-\mathit{\boldsymbol{f}} \right]}\ \rm{d}V-\iint\limits_{{{S}_{\sigma }}}{\mathit{\boldsymbol{T}}}\rm{d}S。 $ (70)

由于

$ \begin{align} & \iiint\limits_{V}{\frac{\partial }{\partial \mathit{\boldsymbol{u}}}A\left( \frac{1}{2}\nabla \mathit{\boldsymbol{u}}+\frac{1}{2}\mathit{\boldsymbol{u}}\nabla +\frac{1}{2}\nabla \mathit{\boldsymbol{u}}\cdot \mathit{\boldsymbol{u}}\nabla \right)}\ \rm{d}V= \\ & \iiint\limits_{V}{\left[ (\mathit{\boldsymbol{I}}+\mathit{\boldsymbol{u}}\nabla )\cdot \frac{\partial A\left( \frac{1}{2}\nabla \mathit{\boldsymbol{u}}+\frac{1}{2}\mathit{\boldsymbol{u}}\nabla +\frac{1}{2}\nabla \mathit{\boldsymbol{u}}\cdot \mathit{\boldsymbol{u}}\nabla \right)}{\partial \left( \frac{1}{2}\nabla \mathit{\boldsymbol{u}}+\frac{1}{2}\mathit{\boldsymbol{u}}\nabla +\frac{1}{2}\nabla \mathit{\boldsymbol{u}}\cdot \mathit{\boldsymbol{u}}\nabla \right)} \right]}:\frac{\partial }{\partial \mathit{\boldsymbol{u}}}\mathit{\boldsymbol{u}}\nabla \rm{d}V, \\ \end{align} $ (71)

应用Green定理, 并考虑到式(65), 可得

$ \begin{align} & \ \ \ \ \iiint\limits_{V}{\left[ (\mathit{\boldsymbol{I}}+\mathit{\boldsymbol{u}}\nabla )\cdot \frac{\partial A\left( \frac{1}{2}\nabla \mathit{\boldsymbol{u}}+\frac{1}{2}\mathit{\boldsymbol{u}}\nabla +\frac{1}{2}\nabla \mathit{\boldsymbol{u}}\cdot \mathit{\boldsymbol{u}}\nabla \right)}{\partial \left( \frac{1}{2}\nabla \mathit{\boldsymbol{u}}+\frac{1}{2}\mathit{\boldsymbol{u}}\nabla +\frac{1}{2}\nabla \mathit{\boldsymbol{u}}\cdot \mathit{\boldsymbol{u}}\nabla \right)} \right]}:\ \frac{\partial }{\partial \mathit{\boldsymbol{u}}}\mathit{\boldsymbol{u}}\nabla \rm{d}V \\ & =\iint\limits_{{{S}_{\sigma }}}{\left[ (\mathit{\boldsymbol{I}}+\mathit{\boldsymbol{u}}\nabla )\cdot \frac{\partial A\left( \frac{1}{2}\nabla \mathit{\boldsymbol{u}}+\frac{1}{2}\mathit{\boldsymbol{u}}\nabla +\frac{1}{2}\nabla \mathit{\boldsymbol{u}}\cdot \mathit{\boldsymbol{u}}\nabla \right)}{\partial \left( \frac{1}{2}\nabla \mathit{\boldsymbol{u}}+\frac{1}{2}\mathit{\boldsymbol{u}}\nabla +\frac{1}{2}\nabla \mathit{\boldsymbol{u}}\cdot \mathit{\boldsymbol{u}}\nabla \right)}\cdot \mathit{\boldsymbol{n}} \right]\rm{d}S}- \\ & \ \iiint\limits_{V}{\left[ (\mathit{\boldsymbol{I}}+\mathit{\boldsymbol{u}}\nabla )\cdot \frac{\partial A\left( \frac{1}{2}\nabla \mathit{\boldsymbol{u}}+\frac{1}{2}\mathit{\boldsymbol{u}}\nabla +\frac{1}{2}\nabla \mathit{\boldsymbol{u}}\cdot \mathit{\boldsymbol{u}}\nabla \right)}{\partial \left( \frac{1}{2}\nabla \mathit{\boldsymbol{u}}+\frac{1}{2}\mathit{\boldsymbol{u}}\nabla +\frac{1}{2}\nabla \mathit{\boldsymbol{u}}\cdot \mathit{\boldsymbol{u}}\nabla \right)}\cdot \nabla \right]\rm{d}V}。 \\ \end{align} $ (72)

将式(71)和(72)代入式(70), 则得

$ \begin{align} & \frac{\partial U}{\partial \mathit{\boldsymbol{u}}}=-\iiint\limits_{V}{\left[ (\mathit{\boldsymbol{I}}+\mathit{\boldsymbol{u}}\nabla )\cdot \frac{\partial A\left( \frac{1}{2}\nabla \mathit{\boldsymbol{u}}+\frac{1}{2}\mathit{\boldsymbol{u}}\nabla +\frac{1}{2}\nabla \mathit{\boldsymbol{u}}\cdot \mathit{\boldsymbol{u}}\nabla \right)}{\partial \left( \frac{1}{2}\nabla \mathit{\boldsymbol{u}}+\frac{1}{2}\mathit{\boldsymbol{u}}\nabla +\frac{1}{2}\nabla \mathit{\boldsymbol{u}}\cdot \mathit{\boldsymbol{u}}\nabla \right)}\cdot \nabla +\mathit{\boldsymbol{f}} \right]\ }\rm{d}V+ \\ & \ \ \ \ \ \ \ \ \ \iint\limits_{{{S}_{\sigma }}}{\left[ (\mathit{\boldsymbol{I}}+\mathit{\boldsymbol{u}}\nabla )\cdot \frac{\partial A\left( \frac{1}{2}\nabla \mathit{\boldsymbol{u}}+\frac{1}{2}\mathit{\boldsymbol{u}}\nabla +\frac{1}{2}\nabla \mathit{\boldsymbol{u}}\cdot \mathit{\boldsymbol{u}}\nabla \right)}{\partial \left( \frac{1}{2}\nabla \mathit{\boldsymbol{u}}+\frac{1}{2}\mathit{\boldsymbol{u}}\nabla +\frac{1}{2}\nabla \mathit{\boldsymbol{u}}\cdot \mathit{\boldsymbol{u}}\nabla \right)}\cdot \mathit{\boldsymbol{n}}-\mathit{\boldsymbol{T}} \right]}\ \rm{d}S。 \\ \end{align} $ (73)

将相关各式代入Lagrange方程, 可得

$ \begin{align} & \frac{\rm{d}}{\rm{d}t}\frac{\partial T}{\partial \mathit{\boldsymbol{\dot{u}}}}-\frac{\partial T}{\partial \mathit{\boldsymbol{u}}}+\frac{\partial U}{\partial \mathit{\boldsymbol{u}}}= \\ & \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \iiint\limits_{V}{\left[ \rho \mathit{\boldsymbol{\ddot{u}}}-(\mathit{\boldsymbol{I}}+\mathit{\boldsymbol{u}}\nabla )\cdot \frac{\partial A\left( \frac{1}{2}\nabla \mathit{\boldsymbol{u}}+\frac{1}{2}\mathit{\boldsymbol{u}}\nabla +\frac{1}{2}\nabla \mathit{\boldsymbol{u}}\cdot \mathit{\boldsymbol{u}}\nabla \right)}{\partial \left( \frac{1}{2}\nabla \mathit{\boldsymbol{u}}+\frac{1}{2}\mathit{\boldsymbol{u}}\nabla +\frac{1}{2}\nabla \mathit{\boldsymbol{u}}\cdot \mathit{\boldsymbol{u}}\nabla \right)}\cdot \nabla -\mathit{\boldsymbol{f}} \right]\rm{d}V+} \\ & \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \iint\limits_{{{S}_{\sigma }}}{\left[ (\mathit{\boldsymbol{I}}+\mathit{\boldsymbol{u}}\nabla )\cdot \frac{\partial A\left( \frac{1}{2}\nabla \mathit{\boldsymbol{u}}+\frac{1}{2}\mathit{\boldsymbol{u}}\nabla +\frac{1}{2}\nabla \mathit{\boldsymbol{u}}\cdot \mathit{\boldsymbol{u}}\nabla \right)}{\partial \left( \frac{1}{2}\nabla \mathit{\boldsymbol{u}}+\frac{1}{2}\mathit{\boldsymbol{u}}\nabla +\frac{1}{2}\nabla \mathit{\boldsymbol{u}}\cdot \mathit{\boldsymbol{u}}\nabla \right)}\cdot \mathit{\boldsymbol{n}}-\mathit{\boldsymbol{T}} \right]}\ \rm{d}S=0。 \\ \end{align} $ (74)

去掉积分号, 可得弹性动力学方程:

$ \rho \mathit{\boldsymbol{\ddot{u}}}-(\mathit{\boldsymbol{I}}+\mathit{\boldsymbol{u}}\nabla )\cdot \frac{\partial A\left( \frac{1}{2}\nabla \mathit{\boldsymbol{u}}+\frac{1}{2}\mathit{\boldsymbol{u}}\nabla +\frac{1}{2}\nabla \mathit{\boldsymbol{u}}\cdot \mathit{\boldsymbol{u}}\nabla \right)}{\partial \left( \frac{1}{2}\nabla \mathit{\boldsymbol{u}}+\frac{1}{2}\mathit{\boldsymbol{u}}\nabla +\frac{1}{2}\nabla \mathit{\boldsymbol{u}}\cdot \mathit{\boldsymbol{u}}\nabla \right)}\cdot \nabla -\mathit{\boldsymbol{f}}=\bf{0}, $ (75)
$ (\mathit{\boldsymbol{I}}+\mathit{\boldsymbol{u}}\nabla )\cdot \frac{\partial A\left( \frac{1}{2}\nabla \mathit{\boldsymbol{u}}+\frac{1}{2}\mathit{\boldsymbol{u}}\nabla +\frac{1}{2}\nabla \mathit{\boldsymbol{u}}\cdot \mathit{\boldsymbol{u}}\nabla \right)}{\partial \left( \frac{1}{2}\nabla \mathit{\boldsymbol{u}}+\frac{1}{2}\mathit{\boldsymbol{u}}\nabla +\frac{1}{2}\nabla \mathit{\boldsymbol{u}}\cdot \mathit{\boldsymbol{u}}\nabla \right)}\cdot \mathit{\boldsymbol{n}}-\mathit{\boldsymbol{T}}=\bf{0}, $ (76)

先决条件为式(65)。

3.2 两类变量Lagrange方程应用于非线性弹性动力学

非线性弹性动力学的动能表示为

$ T=\iiint\limits_{V}{\frac{1}{2}\rho \mathit{\boldsymbol{v}}\cdot \mathit{\boldsymbol{v}}\rm{d}\mathit{V}}。 $ (77)

非线性弹性动力学的势能表示为

$ U={{U}_{1}}+{{U}_{2}}=\iiint\limits_{V}{[A(\mathit{\boldsymbol{E}})}-\mathit{\boldsymbol{f}}\cdot \mathit{\boldsymbol{u}}]\rm{d}V-\iint\limits_{{{S}_{\sigma }}}{\mathit{\boldsymbol{T}}\cdot \mathit{\boldsymbol{u}}}\rm{d}\mathit{S}, $ (78)

其中, ${{U}_{1}}=\iiint\limits_{V}{A (\mathit{\boldsymbol{E}})}\ \rm{d}V$为弹性体的应变能, ${{U}_{2}}=$ $-\iiint\limits_{V}{\mathrm{f}\cdot \mathit{\pmb{u}}\text{d}V}-\iint\limits_{{{S}_{\sigma }}}{\mathit{\pmb{T}}\cdot \mathit{\pmb{u}}}\text{d}S$为外力势能。先决条件为

$ \mathit{\boldsymbol{v}}-\mathit{\boldsymbol{\dot{u}}}=\bf{0}, $ (79)
$ \mathit{\boldsymbol{E}}-\frac{1}{2}(\nabla \mathit{\boldsymbol{u}}+\mathit{\boldsymbol{u}}\nabla +\nabla \mathit{\boldsymbol{u}}\cdot \mathit{\boldsymbol{u}}\nabla )=\bf{0}, $ (80)
$ \mathit{\boldsymbol{u}}-\mathit{\boldsymbol{ }}\!\!\bar{\mathit{\boldsymbol{u}}}\!\!\rm{ }=\bf{0}, $ (81)

其中, E为Green应变张量, u为位移矢量, f为体力矢量, T为面力矢量, v为速度矢量, ρ为质量密度, A(E)为应变能函数, n为法向矢量, ▽为Hamilton算子, Sσ为力的边界, Su为位移边界, V为空间体积域。

Lagrange方程表示为

$ \frac{\rm{d}}{\rm{d}t}\frac{\partial T}{\partial \mathit{\boldsymbol{v}}}-\frac{\partial T}{\partial \mathit{\boldsymbol{u}}}+\frac{\partial U}{\partial \mathit{\boldsymbol{u}}}=0。 $ (82)

推导计算Lagrange方程中的各项:

$ \frac{\partial T}{\partial \mathit{\boldsymbol{u}}}=0, $ (83)
$ \frac{\rm{d}}{\rm{d}t}\frac{\partial T}{\partial \mathit{\boldsymbol{v}}}=\frac{\rm{d}}{\rm{d}t}\frac{\partial }{\partial \mathit{\boldsymbol{v}}}\iiint\limits_{V}{\frac{1}{2}\rho \mathit{\boldsymbol{v}}\cdot \mathit{\boldsymbol{v}}\rm{d}V}=\iiint\limits_{V}{\rho \mathit{\boldsymbol{\dot{v}}}\rm{d}\mathit{V}}。 $ (84)

势能变导项的推导较为复杂:

$ \frac{\partial U}{\partial \mathit{\boldsymbol{u}}}=\frac{\partial }{\partial \mathit{\boldsymbol{u}}}\left\{ \iiint\limits_{V}{[A(E)}-\mathit{\boldsymbol{f}}\cdot \mathit{\boldsymbol{u}}]\rm{d}V-\iint\limits_{{{S}_{\sigma }}}{\mathit{\boldsymbol{T}}\cdot \mathit{\boldsymbol{u}}}\rm{d}S \right\}, $ (85)
$ \begin{align} & \frac{\partial U}{\partial \mathit{\boldsymbol{u}}}=\iiint\limits_{V}{\left[ \frac{\partial }{\partial \mathit{\boldsymbol{u}}}A(\mathit{\boldsymbol{E}})-\mathit{\boldsymbol{f}} \right]}\ \rm{d}V-\iint\limits_{{{S}_{\sigma }}}{\mathit{\boldsymbol{T}}}\rm{d}S \\ & \ \ \ \ \ =\iiint\limits_{V}{\left[ \frac{\partial A(\mathit{\boldsymbol{E}})}{\partial \mathit{\boldsymbol{E}}}:\frac{\partial \mathit{\boldsymbol{E}}}{\partial \mathit{\boldsymbol{u}}}-\mathit{\boldsymbol{f}} \right]}\ \rm{d}V-\iint\limits_{{{S}_{\sigma }}}{\mathit{\boldsymbol{T}}}\rm{d}S。 \\ \end{align} $ (86)

考虑到

$ \rm{ }\!\!\delta\!\!\rm{ }\mathit{\boldsymbol{E}}-\rm{ }\!\!\delta\!\!\rm{ }\frac{1}{2}(\nabla \mathit{\boldsymbol{u}}+\mathit{\boldsymbol{u}}\nabla +\nabla \mathit{\boldsymbol{u}}\cdot \mathit{\boldsymbol{u}}\nabla )=0, $ (87)

则有

$ \begin{align} & \iiint\limits_{V}{\frac{\partial }{\partial \mathit{\boldsymbol{u}}}A(\mathit{\boldsymbol{E}})}\rm{d}V=\iiint\limits_{V}{\frac{\partial A(\mathit{\boldsymbol{E}})}{\partial \mathit{\boldsymbol{E}}}:\frac{\partial \mathit{\boldsymbol{E}}}{\partial \mathit{\boldsymbol{u}}}}\rm{d}V \\ & =\iiint\limits_{V}{\left[ (\mathit{\boldsymbol{I}}+\mathit{\boldsymbol{u}}\nabla )\cdot \frac{\partial A(\mathit{\boldsymbol{E}})}{\partial (\mathit{\boldsymbol{E}})} \right]}:\frac{\partial }{\partial \mathit{\boldsymbol{u}}}\mathit{\boldsymbol{u}}\nabla \rm{d}V。 \\ \end{align} $ (88)

应用Green定理, 并且考虑到

$ \delta \mathit{\boldsymbol{u}}=0\ \ \ \left( 在{{S}_{u}}上 \right), $ (89)

可得

$ \begin{align} & \ \ \ \iiint\limits_{V}{\left[ (\mathit{\boldsymbol{I}}+\mathit{\boldsymbol{u}}\nabla )\cdot \frac{\partial A(\mathit{\boldsymbol{E}})}{\partial (\mathit{\boldsymbol{E}})} \right]}:\ \frac{\partial }{\partial \mathit{\boldsymbol{u}}}\mathit{\boldsymbol{u}}\nabla \rm{d}V \\ & =\iint\limits_{{{S}_{\sigma }}+{{S}_{u}}}{\left[ (\mathit{\boldsymbol{I}}+\mathit{\boldsymbol{u}}\nabla )\cdot \frac{\partial A(\mathit{\boldsymbol{E}})}{\partial (\mathit{\boldsymbol{E}})}\cdot \mathit{\boldsymbol{n}}\frac{\partial \mathit{\boldsymbol{u}}}{\partial \mathit{\boldsymbol{u}}} \right]\rm{d}S}- \\ & \ \ \ \iiint\limits_{V}{\left[ (\mathit{\boldsymbol{I}}+\mathit{\boldsymbol{u}}\nabla )\cdot \frac{\partial A(\mathit{\boldsymbol{E}})}{\partial (\mathit{\boldsymbol{E}})}\cdot \nabla \right]\rm{d}V} \\ & =\iint\limits_{{{S}_{\sigma }}}{\left[ (\mathit{\boldsymbol{I}}+\mathit{\boldsymbol{u}}\nabla )\cdot \frac{\partial A(\mathit{\boldsymbol{E}})}{\partial (\mathit{\boldsymbol{E}})}\cdot \mathit{\boldsymbol{n}} \right]\rm{d}S}- \\ & \ \ \ \iiint\limits_{V}{\left[ (\mathit{\boldsymbol{I}}+\mathit{\boldsymbol{u}}\nabla )\cdot \frac{\partial A(\mathit{\boldsymbol{E}})}{\partial (\mathit{\boldsymbol{E}})}\cdot \nabla \right]\rm{d}\mathit{V}}。 \\ \end{align} $ (90)

将式(88)和(90)代入式(86), 则得

$ \begin{align} & \frac{\partial U}{\partial \mathit{\boldsymbol{u}}}=-\iiint\limits_{V}{\left[ (\mathit{\boldsymbol{I}}+\mathit{\boldsymbol{u}}\nabla )\cdot \frac{\partial A(\mathit{\boldsymbol{E}})}{\partial (\mathit{\boldsymbol{E}})}\cdot \nabla +\mathit{\boldsymbol{f}} \right]\ }\rm{d}V+ \\ & \ \ \ \ \ \ \ \ \ \ \ \iint\limits_{{{S}_{\sigma }}}{\left[ (\mathit{\boldsymbol{I}}+\mathit{\boldsymbol{u}}\nabla )\cdot \frac{\partial A(\mathit{\boldsymbol{E}})}{\partial (\mathit{\boldsymbol{E}})}\cdot \mathit{\boldsymbol{n}}-\mathit{\boldsymbol{T}} \right]}\ \rm{d}\mathit{S}。 \\ \end{align} $ (91)

将相关各式代入Lagrange方程, 可得

$ \begin{align} & \ \ \ \frac{\rm{d}}{\rm{d}t}\frac{\partial T}{\partial \mathit{\boldsymbol{v}}}-\frac{\partial T}{\partial \mathit{\boldsymbol{u}}}+\frac{\partial U}{\partial \mathit{\boldsymbol{u}}} \\ & =\iiint\limits_{V}{\left[ \rho \mathit{\boldsymbol{\dot{v}}}-(\mathit{\boldsymbol{I}}+\mathit{\boldsymbol{u}}\nabla )\cdot \frac{\partial A(\mathit{\boldsymbol{E}})}{\partial (\mathit{\boldsymbol{E}})}\cdot \nabla -\mathit{\boldsymbol{f}} \right]\rm{d}V}+ \\ & \ \ \ \iint\limits_{{{S}_{\sigma }}}{\left[ (\mathit{\boldsymbol{I}}+\mathit{\boldsymbol{u}}\nabla )\cdot \frac{\partial A(\mathit{\boldsymbol{E}})}{\partial (\mathit{\boldsymbol{E}})}\cdot \mathit{\boldsymbol{n}}-\mathit{\boldsymbol{T}} \right]}\ \rm{d}\mathit{S}=0。 \\ \end{align} $ (92)

去掉积分号, 可得弹性动力学方程:

$ \rho \mathit{\boldsymbol{\dot{v}}}-(\mathit{\boldsymbol{I}}+\mathit{\boldsymbol{u}}\nabla )\cdot \frac{\partial A(\mathit{\boldsymbol{E}})}{\partial (\mathit{\boldsymbol{E}})}\cdot \nabla -\mathit{\boldsymbol{f}}=\bf{0}, $ (93)
$ (\mathit{\boldsymbol{I}}+\mathit{\boldsymbol{u}}\nabla )\cdot \frac{\partial A(\mathit{\boldsymbol{E}})}{\partial (\mathit{\boldsymbol{E}})}\cdot \mathit{\boldsymbol{n}}-\mathit{\boldsymbol{T}}=\bf{0}\ 。 $ (94)
3.3 算例

非线性弹性直梁也是工程结构中的重要构件, 亦可以单独组成一个工程结构。将Lagrange方程应用于非线性弹性直梁的动力学问题, 也具有一定的代表性。这里讨论非线性弹性Bernoulli直梁的动力学问题。

非线性弹性直梁的动能表示为

$ T=\int_{0}^{l}{\left[ \frac{1}{2}\rho A{{\left( \frac{\partial w}{\partial t} \right)}^{2}}+\frac{1}{2}\rho A{{\left( \frac{\partial u}{\partial t} \right)}^{2}} \right]}\ \text{d}x。 $ (95)

非线性弹性直梁的势能包括三部分。第一部分为梁的应变能:

${{U}_{1}}=\int_{0}^{l}{\frac{1}{2}EI{{\left( \frac{{{\partial }^{2}}w}{\partial {{x}^{2}}} \right)}^{2}}\text{d}x}。$ (96)

第二部分是轴向拉力的势能, 包括拉伸应变能和拉弯耦合势能:

${{U}_{2}}=\int_{0}^{l}{\frac{1}{2}EA{{\left( \frac{\partial u}{\partial x} \right)}^{2}}\text{d}x},$ (97)
${{U}_{3}}=\int_{0}^{l}{\frac{1}{2}EA\left[ \frac{\partial u}{\partial x}{{\left( \frac{\partial w}{\partial x} \right)}^{2}}+\frac{1}{4}{{\left( \frac{\partial w}{\partial x} \right)}^{4}} \right]\text{d}x}。$ (98)

第三部分为横向分布载荷的势能:

${{U}_{4}}=-\int_{0}^{l}{qw\text{d}x}。$ (99)

总势能为

$ \begin{align} & U={{U}_{1}}+{{U}_{2}}+{{U}_{3}}+{{U}_{4}} \\ & \ \ \ =\int_{0}^{l}{\left[ \frac{1}{2}EI{{\left( \frac{{{\partial }^{2}}w}{\partial {{x}^{2}}} \right)}^{2}}+\frac{1}{2}EA{{\left( \frac{\partial u}{\partial x} \right)}^{2}}+ \right.}\ \\ & \left. \ \ \ \ \ \frac{1}{2}EA\frac{\partial u}{\partial x}{{\left( \frac{\partial w}{\partial x} \right)}^{2}}+\frac{1}{2}EA\frac{1}{4}{{\left( \frac{\partial w}{\partial x} \right)}^{4}}-qw \right]\text{d}x\ 。 \\ \end{align} $ (100)

其中, w为梁的挠度, u为梁的轴向变形, E为梁的弹性模量, A为梁的横截面积, I为梁的抗弯截面系数, r为质量密度, q为分布载荷。

设为悬臂梁, 位移边界条件为

${{\left. w \right|}_{x=0}}=0,\ \ {{\left. \frac{\partial w}{\partial x} \right|}_{x=0}}=0,\ \ {{\left. u \right|}_{x=0}}=0,$ (101)

Lagrange方程表示为

$ \frac{\text{d}}{\text{d}t}\frac{\partial T}{\partial \dot{w}}-\frac{\partial T}{\partial w}+\frac{\partial U}{\partial w}=0, $ (102)
$ \frac{\text{d}}{\text{d}t}\frac{\partial T}{\partial \dot{u}}-\frac{\partial T}{\partial u}+\frac{\partial U}{\partial u}=0, $ (103)

推导计算Lagrange方程中的各项:

$ \frac{\partial T}{\partial w}=0, $ (104)
$ \frac{\partial T}{\partial u}=0, $ (105)
$ \frac{\text{d}}{\text{d}t}\frac{\partial T}{\partial \dot{w}}=\frac{\text{d}}{\text{d}t}\frac{\partial }{\partial \dot{w}}\int_{0}^{l}{\frac{1}{2}\rho A{{(\dot{w})}^{2}}\text{d}x}=\int_{0}^{l}{\rho A\ddot{w}\text{d}x}, $ (106)
$ \frac{\text{d}}{\text{d}t}\frac{\partial T}{\partial \dot{u}}=\frac{\text{d}}{\text{d}t}\frac{\partial }{\partial \dot{u}}\int_{0}^{l}{\frac{1}{2}\rho A{{(\dot{u})}^{2}}\text{d}x}=\int_{0}^{l}{\rho A\ddot{u}\text{d}x}。 $ (107)

势能的变导项的推导比较复杂:

$ \begin{align} & \frac{\partial U}{\partial w}=\frac{\partial }{\partial w}\int_{0}^{l}{\left[ \frac{1}{2}EI{{\left( \frac{{{\partial }^{2}}w}{\partial {{x}^{2}}} \right)}^{2}}+\frac{1}{2}EA{{\left( \frac{\partial u}{\partial x} \right)}^{2}}+ \right.} \\ & \ \ \ \ \ \ \ \ \left. \frac{1}{2}EA\frac{\partial u}{\partial x}{{\left( \frac{\partial w}{\partial x} \right)}^{2}}+\frac{1}{2}EA\frac{1}{4}{{\left( \frac{\partial w}{\partial x} \right)}^{4}}-qw \right]\ \text{d}x, \\ \end{align} $ (108)
$ \begin{align} & \frac{\partial U}{\partial u}=\frac{\partial }{\partial u}\int_{0}^{l}{\left[ \frac{1}{2}EI{{\left( \frac{{{\partial }^{2}}w}{\partial {{x}^{2}}} \right)}^{2}}+\frac{1}{2}EA{{\left( \frac{\partial u}{\partial x} \right)}^{2}}+ \right.} \\ & \ \ \ \ \ \ \ \ \left. \frac{1}{2}EA\frac{\partial u}{\partial x}{{\left( \frac{\partial w}{\partial x} \right)}^{2}}-qw \right]\ \text{d}x。 \\ \end{align} $ (109)

式(108)和(109)可以进一步表示为

$ \begin{align} & \\ & \frac{\partial U}{\partial u}=\int_{0}^{l}{\left[ EI\left( \frac{{{\partial }^{2}}w}{\partial {{x}^{2}}} \right)\frac{\partial }{\partial w}\left( \frac{{{\partial }^{2}}w}{\partial {{x}^{2}}} \right)+EA\frac{\partial u}{\partial x}\left( \frac{\partial u}{\partial x} \right)\frac{\partial }{\partial w}\left( \frac{\partial w}{\partial x} \right) \right.} \\ & \left. \ \ \ \ \ \ \ \ \frac{1}{2}EA{{\left( \frac{\partial w}{\partial x} \right)}^{3}}\frac{\partial }{\partial w}\left( \frac{\partial w}{\partial x} \right)-q \right]\text{d}x, \\ \end{align} $ (110)
$ \frac{\partial U}{\partial u}=\int_{0}^{l}{\left[ EA\left( \frac{\partial u}{\partial x} \right)\frac{\partial }{\partial u}\left( \frac{\partial u}{\partial x} \right)+\frac{1}{2}\frac{\partial }{\partial u}\left( EA\frac{\partial u}{\partial x} \right){{\left( \frac{\partial w}{\partial x} \right)}^{2}} \right]\text{d}x}。 $ (111)

应用Green定理:

$ \begin{align} & \ \ \ \int_{0}^{l}{EI\left( \frac{{{\partial }^{2}}w}{\partial {{x}^{2}}} \right)\frac{\partial }{\partial w}\left( \frac{{{\partial }^{2}}w}{\partial {{x}^{2}}} \right)\text{d}x} \\ & =\left. EI\left( \frac{{{\partial }^{2}}w}{\partial {{x}^{2}}} \right)\frac{\partial }{\partial w}\left( \frac{\partial w}{\partial x} \right) \right|_{0}^{l}-\int_{0}^{l}{EI\left( \frac{{{\partial }^{3}}w}{\partial {{x}^{3}}} \right)\frac{\partial }{\partial w}\left( \frac{\partial w}{\partial x} \right)\text{d}x} \\ & =\left. EI\left( \frac{{{\partial }^{2}}w}{\partial {{x}^{2}}} \right)\frac{\partial }{\partial w}\left( \frac{\partial w}{\partial x} \right) \right|_{0}^{l}-EI\left( \frac{{{\partial }^{3}}w}{\partial {{x}^{3}}} \right)\frac{\partial }{\partial w}w\left| _{0}^{l} \right.+ \\ & \int_{0}^{l}{EI\left( \frac{{{\partial }^{4}}w}{\partial {{x}^{4}}} \right)\frac{\partial }{\partial w}w\text{d}x,} \\ \end{align} $ (112)
$ \begin{align} & \int_{0}^{l}{EA\frac{\partial u}{\partial x}\left( \frac{\partial w}{\partial x} \right)\frac{\partial }{\partial w}\left( \frac{\partial w}{\partial x} \right)\text{d}x} \\ & =EA\frac{\partial u}{\partial x}\left( \frac{\partial w}{\partial x} \right)\frac{\partial }{\partial w}w\left| _{0}^{l} \right.-\int_{0}^{l}{\frac{\partial }{\partial x}\left( EA\frac{\partial u}{\partial x}\frac{\partial w}{\partial x} \right)\frac{\partial }{\partial w}w\text{d}x}, \\ \end{align} $ (113)
$ \begin{align} & \int_{0}^{l}{\frac{1}{2}EA{{\left( \frac{\partial w}{\partial x} \right)}^{3}}\frac{\partial }{\partial w}\left| \frac{\partial w}{\partial x} \right|\text{d}x} \\ & =\frac{1}{2}EA{{\left( \frac{\partial w}{\partial x} \right)}^{3}}\frac{\partial }{\partial w}w\left| _{0}^{l} \right.-\int_{0}^{l}{\frac{\partial }{\partial x}\left[ \frac{1}{2}EA{{\left( \frac{\partial w}{\partial x} \right)}^{3}} \right]\frac{\partial }{\partial w}w\text{d}x}, \\ \end{align} $ (114)
$ \begin{align} & \ \ \ \int_{0}^{l}{EA\left( \frac{\partial u}{\partial x} \right)\frac{\partial }{\partial u}\left( \frac{\partial u}{\partial x} \right)\text{d}x} \\ & =EA\left( \frac{\partial u}{\partial x} \right)\frac{\partial }{\partial u}u\left| _{0}^{l} \right.-\int_{0}^{l}{EA\frac{{{\partial }^{2}}u}{\partial {{x}^{2}}}\frac{\partial }{\partial u}u\text{d}x} \\ & =EA\frac{\partial u}{\partial x}\frac{\partial }{\partial u}u\left| _{0}^{l} \right.-\int_{0}^{l}{\frac{\partial }{\partial x}EA\frac{\partial u}{\partial x}\frac{\partial }{\partial u}u\text{d}x,} \\ \end{align} $ (115)
$ \begin{align} & \int_{0}^{l}{\frac{1}{2}\frac{\partial }{\partial u}\left( EA\frac{\partial u}{\partial x} \right){{\left( \frac{\partial w}{\partial x} \right)}^{2}}\text{d}x} \\ & =\frac{1}{2}EA{{\left( \frac{\partial w}{\partial x} \right)}^{2}}\frac{\partial }{\partial u}u\left| _{0}^{l} \right.-\int_{0}^{l}{\frac{\partial }{\partial x}\left[ \frac{1}{2}EA{{\left( \frac{\partial w}{\partial x} \right)}^{2}} \right]\frac{\partial }{\partial u}u\text{d}x}\ 。 \\ \end{align} $ (116)

将式(112)~(116)代入式(110)和(111), 根据边界条件(式(101)), 并且考虑到在$l=x$处, $\frac{\partial }{\partial w}w, $$\frac{\partial }{\partial w}\left (\frac{\partial w}{\partial x} \right)$$\frac{\partial }{\partial u}u$取定值, 可得

$ \begin{align} & \frac{\partial U}{\partial w}=\int_{0}^{l}{\left\{ EI\frac{{{\partial }^{4}}w}{\partial {{x}^{4}}}-\frac{\partial }{\partial x}\left[ EA\frac{\partial u}{\partial x}\frac{\partial w}{\partial x}+\frac{1}{2}EA{{\left( \frac{\partial w}{\partial x} \right)}^{3}} \right]-q \right\}} \\ & \ \ \ \ \ \ \ \ \text{d}x+{{\left. EI\left( \frac{{{\partial }^{2}}w}{\partial {{x}^{2}}} \right)\frac{\partial }{\partial w}\left[ \frac{\partial w}{\partial x} \right] \right|}_{x=l}}-EI\left( \frac{{{\partial }^{3}}w}{\partial {{x}^{3}}} \right)\frac{\partial }{\partial w}w\left| _{x=l} \right.+ \\ & {{\left. \ \ \ \ \ \ \ EA\frac{\partial u}{\partial x}\left( \frac{\partial w}{\partial x} \right)\frac{\partial }{\partial w}w \right|}_{x=l}}+\ {{\left. \frac{1}{2}EA{{\left( \frac{\partial w}{\partial x} \right)}^{3}}\frac{\partial }{\partial w}w \right|}_{x=l}}, \\ \end{align} $ (117)
$ \begin{align} & \frac{\partial U}{\partial u}=-\int_{0}^{l}{\frac{\partial }{\partial x}\left[ EA\frac{\partial u}{\partial x}+\frac{1}{2}EA{{\left( \frac{\partial w}{\partial x} \right)}^{2}} \right]\text{d}x+} \\ & {{\left. EA\frac{\partial u}{\partial x}\frac{\partial }{\partial u}u \right|}_{x=l}}+{{\left. \frac{1}{2}EA{{\left( \frac{\partial w}{\partial x} \right)}^{2}}\frac{\partial }{\partial u}u \right|}_{x=l}}。 \\ \end{align} $ (118)

将相关各式代入Lagrange方程, 可得

$ \begin{align} & \ \ \ \frac{\text{d}}{\text{d}t}\frac{\partial T}{\partial \dot{w}}-\frac{\partial T}{\partial w}+\frac{\partial U}{\partial w} \\ & =\int_{0}^{l}{\left\{ \rho A\ddot{w}+EI\frac{{{\partial }^{4}}w}{\partial {{x}^{4}}}- \right.} \\ & \left. \ \ \ \frac{\partial }{\partial x}\left[ EA\frac{\partial u}{\partial x}\frac{\partial w}{\partial x}+\frac{1}{2}EA{{\left( \frac{\partial w}{\partial x} \right)}^{3}} \right]-q \right\}\ \text{d}x+ \\ & {{\left. \ \ \ EI\left( \frac{{{\partial }^{2}}w}{\partial {{x}^{2}}} \right)\frac{\partial }{\partial w}\left( \frac{\partial w}{\partial x} \right) \right|}_{x=l}}-{{\left. EI\left( \frac{{{\partial }^{3}}w}{\partial {{x}^{3}}} \right)\frac{\partial }{\partial w}w \right|}_{x=l}}+ \\ & {{\left. \ \ \ EA\frac{\partial u}{\partial x}\left( \frac{\partial w}{\partial x} \right)\frac{\partial }{\partial w}w \right|}_{x=l}}+{{\left. \frac{1}{2}EA{{\left( \frac{\partial w}{\partial x} \right)}^{3}}\frac{\partial }{\partial w}w \right|}_{x=l}}=0, \\ \end{align} $ (119)
$ \begin{align} & \ \ \ \frac{\text{d}}{\text{d}t}\frac{\partial T}{\partial \dot{u}}-\frac{\partial T}{\partial u}+\frac{\partial U}{\partial u} \\ & =\int_{0}^{l}{\left\{ \rho A\ddot{u}-\frac{\partial }{\partial x}\left[ EA\frac{\partial u}{\partial x}+\frac{1}{2}EA{{\left( \frac{\partial w}{\partial x} \right)}^{2}} \right] \right\}\text{d}x}+ \\ & EA\frac{\partial u}{\partial x}\frac{\partial }{\partial u}u\left| _{x=l} \right.+{{\left. \frac{1}{2}EA{{\left( \frac{\partial w}{\partial x} \right)}^{2}}\frac{\partial }{\partial u}u \right|}_{x=l}}=0\ 。 \\ \end{align} $ (120)

去掉积分号, 可得弹性直梁的动力学方程和自然边界条件:

$ \rho A\ddot{w}+EI\frac{{{\partial }^{4}}w}{\partial {{x}^{4}}}-\frac{\partial }{\partial x}\left[ EA\frac{\partial u}{\partial x}+\frac{1}{2}EA{{\left( \frac{\partial w}{\partial x} \right)}^{2}} \right]\frac{\partial w}{\partial x}-q=\text{0}, $ (121)
$ \rho A\ddot{u}-\frac{\partial }{\partial x}\left[ EA\frac{\partial u}{\partial x}+\frac{1}{2}EA{{\left( \frac{\partial w}{\partial x} \right)}^{2}} \right]=0, $ (122)
$ {{\left. EI\left( \frac{{{\partial }^{2}}w}{\partial {{x}^{2}}} \right) \right|}_{x=l}}=0, $ (123)
$ -EI\left( \frac{{{\partial }^{3}}w}{\partial {{x}^{3}}} \right)+{{\left. EA\left[ \frac{\partial u}{\partial x}\left( \frac{\partial w}{\partial x} \right)+\frac{1}{2}\left( \frac{{{\partial }^{3}}w}{\partial {{x}^{3}}} \right) \right] \right|}_{x=l}}=0, $ (124)
$ {{\left. EA\left[ \frac{\partial u}{\partial x}+\frac{1}{2}{{\left( \frac{\partial w}{\partial x} \right)}^{2}} \right] \right|}_{x=l}}=0。 $ (125)

式(121)和(122)是域中的控制方程, 式(123)~(125)是力的边界条件。

参考文献
[1] Lagrange J L. Mécanique analytique. Paris: Ve Courcier, 1811 .
[2] Hamilton W R. On a general method in dynamics: PartⅠ. Philosophical Transaction of the Royal Society , 1834 : 247–308 .
[3] Hamilton W R. On a general method in dynamics: Part Ⅱ. Philosophical Transaction of the Royal Society , 1835 : 95–144 .
[4] 汪家訸. 分析动力学. 北京: 高等教育出版社, 1958 .
[5] Goldstein H. Classical mechanics. 2nd ed. Reading, MA: Addison-Wesley Publishing, 1980 .
[6] 赵俊伟, 李雪锋, 陈国强. 基于Lagrange方法的3-PRS并联机构动力学分析. 机械设计与研究 , 2015, 31 (2) : 1–5.
[7] 林良明, 吴俊. 用Lagrange方程描述假手机构动力学的研究. 中国生物医学工程学报 , 1989, 8 (1) : 1–8.
[8] 王启明, 汪劲松, 刘辛军, 等. 二移动自由度并联操作臂的动力学建模. 清华大学学报:自然科学版 , 2002, 42 (11) : 1469–1472.
[9] 孙伟, 汪博, 鲁明, 等. 基于拉格朗日方程的直线滚动导轨系统解析建模. 计算机集成制造系统 , 2012, 18 (4) : 781–786.
[10] 卢长福, 傅鹏, 黄诚, 等. Lagrange方程在振动系统中的应用. 江西科学 , 2013, 3 (2) : 148–150.
[11] 赵晓兵, 方秦. Lagrange方程在防护工程中的应用及其相关的力学问题. 防护工程 , 2000 (2) : 28–32.
[12] 靳希, 鲁炜. Lagrange方程应用于电系统和机电系统运动分析. 上海电力学院学报 , 2003, 19 (4) : 1–4.
[13] 颜振珏. 非惯性参照系中的Lagrange方程. 黔南民族师范学院学报 , 2004, 24 (6) : 8–11.
[14] 廖旭. 非惯性系中的Lagrange方程及其应用. 云南大学学报:自然科学版 , 2004, 26 (B07) : 122–124.
[15] 和兴锁, 宋明, 邓峰岩. 非惯性系下考虑剪切变形的柔性梁的动力学建模. 物理学报 , 2011, 60 (4) : 323–328.
[16] 沈惠川. 弹性力学的Lagrange形式:用Routh方法建立弹性有限变形问题的基本方程. 数学物理学报 , 1998, 18 (1) : 78–88.
[17] 方刚, 张斌. 弹性介质的Lagrange动力学与地震波方程. 物理学报 , 2013, 62 (15) : 248–253.
[18] 薛纭, 翁德玮, 陈立群. 精确Cosserat弹性杆动力学的分析力学方法. 物理学报 , 2013 (4) : 312–318.
[19] 马善钧, 徐学翔, 黄沛天, 等. 完整系统三阶Lagrange方程的一种推导与讨论. 物理学报 , 2004, 53 (11) : 3648–3651.
[20] 丁光涛. 状态空间Lagrange函数和运动方程. 中国科学: G辑 , 2009, 39 (6) : 813–820.
[21] 梅凤翔. 分析力学(下卷). 北京: 北京理工大学出版社, 2013 .
[22] Liang Lifu, Shi Zhifei. On the inverse problem in calculus of variations. Applied Mathematics and Mechanics , 1994, 15 (9) : 815–830 DOI:10.1007/BF02451631 .
[23] Liang Lifu, Hu Haichang. Generalized variational principle of three kinds of variables in general mechanics. Science in China: Series A , 2001, 44 (6) : 770–776 .
[24] 梁立孚. 变分原理及其应用. 哈尔滨: 哈尔滨工程大学出版社, 2005 .
[25] 陈滨. 分析动力学. 2版. 北京: 北京大学出版社, 2010 .