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Abstract  Noether symmetries and their inverse problems of the nonholonomic systems with the fractional 

derivatives are studied. Based on the quasi-invariance of fractional Hamilton action under the infinitesimal 

transformations without the time and the general transcoordinates of time-reparametrization, the fractional Noether 

theorems are established for the nonholonomic constraint systems. Further, the fractional Noether inverse problems 

are firstly presented for the nonholonomic systems. An example is designed to illustrate the applications of the 

results. 
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摘要  研究分数阶非完整系统的 Noether 对称性及其逆问题。基于分数阶非完整系统的 Hamilton 作用量关于

广义坐标以及时间在无限小变换下的不变性, 提出系统的 Noether 定理, 并首次提出分数阶非完整动力学系

统的逆问题。最后给出一个算例, 以说明结果的应用。 

关键词  分数阶导数; 非完整系统; Noether 对称性; Noether 逆问题 

中图分类号  O320 

Fractional calculus is the emerging mathematical 

field dealing with the generalization of the derivatives 

and integrals to arbitrary real order. It was born in 

1965 and from then on considered as the branches of 

mathematical and theoretical with no applications for 

many years. But, during the last two decades, it has 

been applied to many areas such as mathematics, 

economics, biology, engineering and physics[1–5]. 

Besides, it has played a significant role in quantum 

mechanics, long-range dissipation, electromagnetic 

theory, chaotic dynamics, and signal processing[6–11]. 

However, one can find its importance in the fractional 

of variations theory and optimal control. Riewe[12–13] 

studied a version of the Euler-Lagrange equations of 

conservative and nonconservative systems with 

fractional derivatives. Agrawal[14–15] obtained the 

Euler-Lagrange equations for fractional variational 

problems by using the fractional derivatives of 

Riemann-Liouville sense and Caputo sense. Then, 

El-Nabulsi[16–18], Ricardo et al.[19] and Teodor et al.[20] 

also made lots of contributions to the fractional 

variational problems. 

The concepts of symmetry and conservation law 

are fundamental notions in physics and mathema- 
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tics[21]. Symmetries are the invariance of the 

dynamical systems under the infinitesimal transfor- 

mations, and hold the same object when applying the 

transformations. They are described mathematically 

by infinitesimal parameter group of transformations. 

The concept of symmetries of mechanical systems can 

be used to integrate the equations of motion and 

establish the invariance of the systems. They have 

played an important role in mathematics, physics, 

optimal control, engineering[2230]. Conservation law 

of systems can be used to reduce to the dimension of 

the equations of motion and simplifying the resolution 

of the problems[31–32]. In the last few years, Fu et 

al.[33–35] , Zhang[36], and Li [37] made many important 

results symmetries and conserved quantities of non- 

holonomic systems. Zhou et al.[38] studied the Noether 

symmetry theories of the fractional Hamiltonian 

systems. Frederico et al.[39], Zhang[40–41], and Agrawal[42] 

also present the problems of Noether symmetry of 

fractional systems. 

We all know that the fractional nonholonomic 

constraints restrict the stations of fractional systems, 

and the fractional nonholonomic systems are more 

generalize dynamical systems, which have attracted 

much attention. Sun et al.[43] gave the fractional 

first-order and second-order extensions form of Lie 

group transformation, and the corresponding Lie 

symmetries of fractional nonholonomic systems were 

discussed. Zhang et al.[44] studied Noether symmetries 

of fractional mechanico-electrical systems. Recently, 

Fu et al.[45] presented Lie symmetries and their inverse 

problems of fractional nonholonomic systems. 

However, applying fractional calculus to fractional 

nonholonomic systems and obtaining Noether inverse 

problem of nonholonomic systems have not been 

studied.  

In this paper, we study the Noether symmetries 

and their inverse problems of nonholonomic systems 

with the fractional derivatives. Firstly, we establish 

the fractional derivatives equations of nonholonomic 

systems. Then, the Noether theorems and the corres- 

ponding conserved quantities are given by using the 

infinitesimal transformations without time and the 

general transformations of time-reparametrization. 

Finally, we study fractional Noether inverse problems. 

1  Definitions and Properties of 
Riemann-Liouville Fractional De- 
rivatives 

In this section, we briefly recall some basic 

definitions and properties of left and right 

Riemann-Liouville fractional derivatives[40–41].  

Definition 1  Let f be a continuous and 

integrable function in the interval [a, b]. The left 

Riemann-Liouville fractional derivatives (LRLFD) 

( )a tD f t and the right Riemann-Liouville fractional 

derivatives (RRLFD) ( )t bD f t are defined as 

1

( )

1 d
( ) ( )d ,

( ) d

a t

n
t

n

a

D f t

t f
n t



  


        
 

(1)
 

1

( )

1 d
( ) ( )d ,

( ) d

t b

n
b

n

t

D f t

t f
n t



  
 

        
 

(2)
 

where α is the order of the derivatives such that n−1≤α 

<n, n∈N, and Γ is the Euler gamma function. If α is 

an integer, these derivatives are defined in the usual 

sense, i.e. 

 

d
( ) ( ),

d

d
( ) ( ).

d

a t

t b

D f t f t
t

D f t f t
t







   
 

   
 

 

Theorem 1  Let f and g be two continuous 

functions defined on the interval [a, b]. Then for all t 

∈ [a, b], the following properties hold: 

for m > 0, 

  ( ) ( ) ( ) ( )m m m
a a t a tD f t g t D f t D g t   ; (3) 

for m ≥ n ≥ 0,  

  ( ) ( )m n m n
a t a t a tD D f t D f t  ; (4) 

for m > 0,  
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 ( ( )) ( )d ( )( ( ))d
b b

m m
a t t b

a a
D f t g t t f t D g t t  . (5) 

From Agrawal[14], the Euler-Lagrange equations of 

conservative systems with the fractional variational 

problems as 

 
0,

[ , ],

t b a t
a t t b

L L L
D D

q D q D q

t a b

 
 

  
  

  



 
(6)

 

where L is a Lagrangian. When α = β =1, we have

d

da tD
t

  and d

dt bD
t

  
 
and the Eq. (6) is reduce to 

the standard Euler-Lagrange equations. 

2  The Equations of Motion of Non- 
holonomic Systems with Fractio- 
nal Derivatives 
In this section, we introduce the equations of 

motion and the Hamilton action of fractional 

nonholonomic systems[38]. At first, we consider the 

constrained mechanical system which configuration 

are determined by n generalized coordinates

( , 1, 2, ..., )kq k N k n  and the motions of system are 

subjected to the μ ideal bilateral nonholonomic 

constraints of Appell-Chetaev type 

 
( , , , )

( 1, ... , ),

a t t bf t q D q D q

g

 







 

(7)
 

we suppose that these constraints are independent 

each other, therefore the restrictive conditions of 

virtual displacement which decide on these constrains 

as follows: 

 
1 1

0, 0
n n

k k
k ka t k t b k

f f
q q

D q D q
 
  

 

 
 

   . (8) 

Hence, the equations of motion of nonholonomic 

systems with fractional derivatives are given by 

 

1 1

,

t b a t
k a t k t b k

n n

k ka t k t b
k

k

f f

D q D q

L L L
D D

q D q D q

Q  


 
 

  
 

  
 

  

  
 


  

 

(9)

 

where L is the Lagrange function of the given systems, 

the Lagrangian :[ , ] n nL a b R R R    is determined 

by n generalize coordinates kq and assumed to be a
2C function with respect to all its arguments. The 

parameter  is the Lagrange constraint multiplier, and

kQ is the non-potential generalized force. 

When we assume that the fractional system is 

nonsingular, before calculus the derivatives function 

(7) and (9), we can get function ( , , ,a tt q D q 
)t bD q , therefore the Eq. (9) can be written as 

 
,

t b a t
k a t k t b k

k k

L L L
D D

q D q D q

Q

 
 



  
 

  

  
 (10) 

where Λk 
is the nonholonomic constraint forces which 

determined by parameter , , ,a t t bt q D q D q  , that is 

 

1 1

, )

,

( , ,
n n

k sa

k k

t k t b k

a t t b

f f

D

t q

D

q

q q

D D q






 



 



 


 



 



 
 

(11)
 

We say that the extremum problem of the faction 

integral function (12) is the fractional Hamilton action 

of the nonholonmic systems 

 ( , , , ) d
b

k a t k t b k
a

S L t q D q D q t   , (12) 

with the commutative relations, 

 
δ δ ,

δ δ ,

a t k a t k

t b k t b k

D q D q

D q D q

 

 

 



 (13) 

and the boundary conditions, 

 ( ) , ( )
k k k kt a t b

q a q q b q
 

  ,  

where δ is the isochronous variation operator. The 

quasi-invariance problem of function (12) is called 

variational problem of fractional nonhonholonomic 

systems. When α = β =1, the problem is reduced to 

the classical Hamilton action variational problem of 
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nonholonomic systems. 

3  Noether Theorem of Nonholono- 
mic Systems with Fractional Deri- 
vatives 

In this section, we give the definition and the 

necessary conditions of the quasi-invariance of 

Hamilton action (12) under the infinitesimal group of 

transformations. We adopt the infinitesimal trans- 

formations contain without the time variable and the 

general transformations of time-reparametrization. 

Then we obtain the factional Noether theorems 

without transformation of the time and the general 

with transformation of time-reparametrization respect- 

ively.  

Definition 2  (invariance without transforming 

the time). For a fractional nonholonomic system, we 

call that the formula (12) is quasi-invariant under the 

one-group of infinitesimal transformations 

 
( ) ( ) ( , ) ( )

( 1, 2, ... , ),
k k k kq t q t t q

k n

    


 

(14)
 

if and only if, 

 

2
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( , ( ), ( ), ( ))d

( , ( ), ( ))d
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,
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t
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   

 

   







 

(15)

 

for any subinterval 1 2[ , ] [ , ]t t a b , where k kq  , k

are the fractional infinitesimal generation functions of 

the infinitesimal transformations, ( , )N kG G t q  are 

fractional gauge functions of nonholonomic system. 

Theorem 2  (Necessary condition of quasi- 

invariant). For a fractional nonholonomic system, if 

the function (12) is quasi-invariant under ε parameter 

infinitesimal group of transformations (14), then they 

must satisfy the following conditions, 

 

( .)

a t t b
k a t k t b k
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 

 

(16) 

Proof  By hypothesis, we know that the 

conditions (15) are true of the arbitrary subinterval

1 2[ , ] [ , ]t t a b , taking the derivative of the condition 

(15) with respect to ε, substituting ε = 0. From the 

definitions and properties of the fractional derivatives, 

we get 
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
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


 
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 (17) 

Eq. (17) is equivalent to Eq. (16). 

In order to obtain the fractional conserved 

quantity of nonholonomic systems, we introduce the 

following definition[33]. 

Definition 3  Given two functions f and g of 

class C1 in the interval [a, b], we define the following 

operator: 

 
,

[ , ],

( , ) a t t bt f g f D g g D f

t a b

  



D
 

(18)
 

when α =1, operator t
D is reduced to 

 

1 11

d

( ,

d

)

.

a t t bt D g g Df f

fg fg f

f

g
t

g 

 





D
 

Definition 4  (Fractional conserved quantity). 

For a fractional nonholonomic system, the function 
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( , , , )k a t k t b kI I t q D q D q  is a fractional conserved 

quantity if and only it can be written as 

 
1

1

2

( , , , )

( , , , ) ,
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i k a t k t b k
i

i k a t k t b k

I I t q D q D q
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(19)

 

where r N , and the pair I1
i and I2

i (i=1, …, r) must 

satisfy one of the following conditions: 
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( , , , )) 0 ,

i k a t k t b k

i k a t k t

t

b k

I t q D q D q

I t q D q D q
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D
 

under the fractional Euler-Lagrange Eq. (6). 

Theorem 3  (Noether theorem without trans- 

formation of time). For a fractional nonholonomic 

system, if the Hamilton action satisfies the Definition 

2 and k satisfies the necessary conditions (16), then 

the system possesses the fractional conserved quantity 

as follows: 

( , , , )

.

k a t k t b k

N
a t k t b k

k

I t q D q D q
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(20)

 

Proof  We consider the fractional derivatives 

Eq. (10) of the nonholonomic systems: 

 
( ) ,

t b
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Substituting Eq. (21) into the necessary conditions of 

quasi-invariance (16), we obtain 
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Definition 5  (Invariance of Eq. (12)). For a 

fractional nonholonomic system, we say that Eq. (12) 

is quasi-invariant under a  parameter infinitesimal 

group of transformations 
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if and only if  
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for any subinterval 1 2[ , ] [ , ]t t a b , where   be a 

infinitesimal generation functions of the infinitesi- 

mal transformations, ( ) (k k a t k kq D q         

))t b kD q  . 

Theorem 4  (Noether theorem). For a fractional 

nonholonomic system, if Eq. (12) satisfies Definition 

5 under the one-parameter group of infinitesimal 

transformations (23) and conditions (24), then the 

system holds the fractional conserved quantity as: 

( , , , )k a t k t b kI t q D q D q   

( )a t k

a t k

k

L
L D q

D q


   
 


   

 

( ) .t b

b

k k N

t k

L
D q G

D q


   



 (25) 

Proof  Introducing a one-to-one Lipschitzian 

transformation with respect to the independent 

variable t, 
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 [ , ] ( ) [ , ]a bt a b f     , (26) 

and it satisfies if 0  , then ( ) 1t f    . Applying 

this transformation into Eq. (24), we have 

 

2

1

( ( ), ( ( ))

( ), ( ( )), ( ( )),
d

( ( ))

d ,
( ) ( ( ))

b

a

k a t k

t b k

t
a t t b

t
kk k

S t q t

t q t D q t
L t

D q t

D G D G
t

q tQ





 



  





 

 

     
  

       
   





 

(27)

 

where ( ) , ( )a bt a t b   . Under the definitions of 

fractional Riemann-Liouville, we get 

  

   

 
2

2

( )

( ) 1 1

( )

1

( )

( )

1 d

( ) d ( )

( ) ( ) d

( ) d
( )d

( ) d

( ) ( ).

a

n

t k

f n

ka

f

n
n

ka

t

a k

t

D q t
n t

f q f

t
s q s s

n

t D q






 

  



  

 
 


 

     


 



  


 







 
     



       






 

(28)

 

We can also obtain the following equality: 

 
2

( )

( )

( ( )) ( ) ( )
bt k b k

t

D q t t D q


  
    



 . (29) 

When 0  , we have 

 

2

2

( )

( )

( ) ( )

, ( ) ( )

.

a k

t

a t k b k

t

t b k

t D q

D q t D q

D q





 
 

  
 





















 

Then we obtain 

 

2 2( ) ( )

( ( ), ( ( ))

( ), ( ( )), ( )
d( ), ( ) ( )

b

a

k

a k b k

t t

S t q t

t q t t
L tD q t D q

 




     

 
 





 

 

  
    
  


 

 

2

1

2

1
2( )

( ( ( ), ( ( ))))
d

( ( ( ), ( ( ))))

( () ( )

( ) ) d

t
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t
t b N k
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t
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t

D G t q t

t
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Q

D









 


  


  

  










     
  
  


 
  

  




 

 

2

2

2

1

2

( )

( )

( )

( ), ( ( )), , ( ) ( ),

d
( ) ( )

( ), ( ( )),
d

( ( ), ( ( )),

)

)

)

( ( ( )

( )

b

a

k a k

t

b k

t

t
a t k

t
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k
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t

k k

t q t t t D q

L
t D q

D G t q t t

D G t q t t

t

D

Q

q







 
  



 
  













  




 


 
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











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  
     
  

      
  

  
 
 













2

1

2

1

d

( , ( ) ( ), ( )) d

( ( ) ) d

( ( )).

t

t

b

k a t k t b k
a

t

a t t b kk
t

k

t

L t q t D q t D q t t

D G D G q t

S

Q

q



 

 








 

   

 







  

We know that if the functional (12) satisfies the 

quasi-invariant condition (24) under the sense of 

Definition 5, then Eq. (27) satisfies the quasi-invariant 

condition (15) under the sense of Definition 2. Finally 

using Theorem 3, we obtain the following fractional 

conserved quantity: 

2

2

2

2

( )

( )

( )

( )

( ( ), ( ( )), , ( ) ( ),

( ) ( ))
( ) ( )

( ) ( )

( )

( ) ,

k a k

t

a k

a kt

t

k N

b k

t

k a t k

a t k

k t b k N

t b k

I t q t t t D q

L
t D q

t D q

L
L G

tt D q

L
L D q

D q

L
D q G

D q









 
  

 
   

 

 
 







  




 


   

  















 

    


 
    




   




 



 

(31)

 

where 

 

2

2

2

( )

1

( )

( )

( ) ( )

( ) d
( ) ( )d

( ) d

( ) ( )

a k

t

n

n
ka

t

b k

t

L
L L

t tt D q

t
s q s s t

n

L

t D q







 
  

 




 
 





 








 







  
   

  

           






  

(30)
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2 1( )( ) d
( ) ( )d

( ) d

bn

nt
k

t
s q s s t

t n









 


 

             


 

,a t k t b k

a t k t b k

L L
L D q D q

D q D q
 

   
  

 
 (32) 

and 

2 2( ) ( )

.
( ) ( ) ( ) ( )

a t k t b k

a k b k

t t

L L

D q D q

L L

t D q t D q
 

 

   
     

 

 


 

 
 

  

 
(33)

 

4  Noether Inverse Problems of Non- 
holonomic Systems with Fractio- 
nal Derivatives 
In this section, we study the inverse problems of 

dynamics for the nonholonomic systems with 

fractional derivatives. By using Noether theory the 

generators and the gauge functions of the infinitesimal 

transformations corresponding to the known con- 

served quantities are deduced simultaneously. 

Firstly, we suppose that nonholonomic system is 

nonsingular and the fractional conserved quantity is 

 ( , , , ) constk a t k t b kI I t q D q D q   . (34) 

Let the fractional differential operator t bD act on Eq. 

(28), we obtain 

 

( )

,

t b t b k t b a t k
k a t k

t b k

t b k

I I I
D t D q D D q

t q D q

I
D q

D q

   


 




  
  

  




 (35)

 

and using the same method, from the fractional 

differential operator a tD , we have 

 

( ) .

a t a t k a t k
k a t k

a t t b k

t b k

I I I
D t D q D q

t q D q

I
D D q

D q

   


 


  
  

  




 

(36)

 

Then, multiplying k a t kD q   on both side of Eq. 

(8) and expanding of the result, we get 

2 2

2 2

2 2
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 
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 
 
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




2
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L
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L
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 
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
 

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    
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(37)

 

Using the similar multiplier
 k t b kD q   , we can 

also expand the following formula: 

( ),

t b a t k k
k a t k

t

k

k

t b

b kD

L L L
D D Q

q D q D q

q

 
 
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



   
     
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

 
(38)

 

Further, we use Eq. (37) minus (35), separate out the 

items of containing ( ),t b a t kD D q  and make its 

coefficient be equal to zero, we get 

 
2

2
( ) 0.

( ) k a t k

a t k a t k

L I
D q

D q D q


    
  

 
 (39) 

Using the same method, Eq. (38) minus (36), separating 

out the items of containing  ( )a t t b kD D q  , and making 

its coefficient be equal to zero, we get 
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2
( ) 0.

( ) k t b k

t b k t b k

L I
D q

D q D q


    
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 (40) 

By hypothesis, we know the nonsingular of the given 

fractional nonholonomic system, from Eq. (39) and 

(40) , we obtain 
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
   

     

  (41) 

where 
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 1 ,k a t k k t b kD q D q            . 

Finally, in order to obtain the infinitesimal 

generation function  and the gauge functions, let the 

function (34) be equal to the conserve quantity (Eq. 

(25)) determined by Theorem 4, we have 

 
( .
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)

a t k
a t k

t b k N
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L
L D q
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D q G
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(42)

 

Eqs. (41) and (42) reduce to the generation functions 

of infinitesimal transformations. 

5  Example 
We consider the kinetic energy and potential 

energy of the system respectively as follows: 

 2 2
1 2

1
(( ) ( ) ), 0

2 a t a tT D q D q V    , (43) 

the nonholonomic constraint as: 

 1 2 2 0a t a tf D q bt D q bq t      . (44) 

Now we study its Noether symmetry and its inverse 

problems. 

1) The Lagrangian of the nonhonolomic system is 

as follows: 

 2 2
1 2

1
(( ) ( ) )

2 a t a tL T V D q D q     , (45) 

the fractional Hamilton action can be written as 

 2 2
1 2 d1/ 2(( ) ( ) )a t a t

b

a
D D qS tq   , (46) 

which is quasi-invariant under Definition 5. For the 

problem (46), we can conclude the following solutions 

from the condition (24): 

 1
2 1

1 1
10, , 1,bt qG b        ; (47) 

 

2 2 2
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(48)
 

Eqs. (47) and (48) corresponding to Noether symme- 

tries of the fractional Hamilton action (46). For the 

fractional Noether Theorem 4, the fractional conser- 

ved quantities as follows (25), 

 1
1

2 1a t a tD q DI qbt bq    , (49) 

 2 0I  . (50) 

2) Noether inverse problems. 

We suppose that 

 1 2 1a t a tD q D qI bt bq    , (51) 

is the fractional conserve quantity of the nonholono- 

mic system, and the fractional Lagrangian is Eq. (45). 

Then by using Eqs. (41) and (42), the generators and 

the gauge functions of the infinitesimal transform- 

ations corresponding to the known conserved quan- 

tities are deduced simultaneously, we get 
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 (52) 

the solution can be written as 
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1
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bq G
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q
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  


   
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 (53) 

When G is given by 

 1G bq , (54) 

we get 

 1 20, , 1bt      . (55) 

When G is given by, 

 1G Lbq  , (56) 

we get 

 1 1

2 2

1,

,

1 .

a t

a t

bt D q

D q






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


  
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 (57) 

6  Conclusion 

In this paper, we use the Riemann-Liouville 

fractional derivatives to obtain the fractional Noether 
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theorem and the fractional Noether inverse theorem of 

nonholonomic systems under the infinitesimal trans- 

formations. We find that the dynamic symmetry 

inverse problems of multiple values are the inherent 

characteristics, and how to choose the appropriate 

equations in practice need further research. 
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