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Abstract Noether symmetries and their inverse problems of the nonholonomic systems with the fractional
derivatives are studied. Based on the quasi-invariance of fractional Hamilton action under the infinitesimal
transformations without the time and the general transcoordinates of time-reparametrization, the fractional Noether
theorems are established for the nonholonomic constraint systems. Further, the fractional Noether inverse problems
are firstly presented for the nonholonomic systems. An example is designed to illustrate the applications of the
results.
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Fractional calculus is the emerging mathematical
field dealing with the generalization of the derivatives
and integrals to arbitrary real order. It was born in
1965 and from then on considered as the branches of
mathematical and theoretical with no applications for
many years. But, during the last two decades, it has
been applied to many areas such as mathematics,
economics, biology, engineering and physics!' ).
Besides, it has played a significant role in quantum
mechanics, long-range dissipation, electromagnetic
theory, chaotic dynamics, and signal processing!® "],

However, one can find its importance in the fractional

FEI R H AR 345 (11272287, 11472247) %2 B

of variations theory and optimal control. Riewe!'*"!

studied a version of the Euler-Lagrange equations of
conservative and nonconservative systems with
fractional derivatives. Agrawal!'*'* obtained the
Euler-Lagrange equations for fractional variational
problems by using the fractional derivatives of
Riemann-Liouville sense and Caputo sense. Then,
El-Nabulsi'®'®! Ricardo et al.'”! and Teodor et al.[*"
also made lots of contributions to the fractional
variational problems.

The concepts of symmetry and conservation law

are fundamental notions in physics and mathema-
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(211, invariance of the

tics Symmetries are the
dynamical systems under the infinitesimal transfor-
mations, and hold the same object when applying the
transformations. They are described mathematically
by infinitesimal parameter group of transformations.
The concept of symmetries of mechanical systems can
be used to integrate the equations of motion and
establish the invariance of the systems. They have
played an important role in mathematics, physics,

[22-30]

optimal control, engineering . Conservation law

of systems can be used to reduce to the dimension of

the equations of motion and simplifying the resolution

of the problems?' %

a] 13335

. In the last few years, Fu et
, Zhang"¥ and Li "' made many important
results symmetries and conserved quantities of non-
holonomic systems. Zhou et al.**! studied the Noether
symmetry theories of the fractional Hamiltonian
systems. Frederico et al.””), Zhang!***!! and Agrawal*”
also present the problems of Noether symmetry of
fractional systems.

We all know that the fractional nonholonomic
constraints restrict the stations of fractional systems,
and the fractional nonholonomic systems are more
generalize dynamical systems, which have attracted

much attention. Sun et al.[**

gave the fractional
first-order and second-order extensions form of Lie
group transformation, and the corresponding Lie
symmetries of fractional nonholonomic systems were
discussed. Zhang et al.*! studied Noether symmetries
of fractional mechanico-electrical systems. Recently,
Fu et al.**! presented Lie symmetries and their inverse
problems of fractional nonholonomic systems.
However, applying fractional calculus to fractional
nonholonomic systems and obtaining Noether inverse
problem of nonholonomic systems have not been
studied.

In this paper, we study the Noether symmetries
and their inverse problems of nonholonomic systems
with the fractional derivatives. Firstly, we establish
the fractional derivatives equations of nonholonomic
systems. Then, the Noether theorems and the corres-
ponding conserved quantities are given by using the

infinitesimal transformations without time and the
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general transformations of time-reparametrization.

Finally, we study fractional Noether inverse problems.

1 Definitions and Properties of
Riemann-Liouville Fractional De-
rivatives

In this section, we briefly recall some basic

definitions and properties of left and right

Riemann-Liouville fractional derivatives!“* '],
Definition 1 Let f be a continuous and
integrable function in the interval [a, b]. The left
Riemann-Liouville fractional derivatives (LRLFD)
D f(t) and the right Riemann-Liouville fractional

derivatives (RRLFD) D f(¢) are defined as
D0
L) feorereen

“T-a) ;

D@
1

d ot n—a-1
‘r(n—_a)[‘E] [ rean. @

where a is the order of the derivatives such that n—1<a
<n, n€N, and [ is the Euler gamma function. If « is
an integer, these derivatives are defined in the usual

sense, i.e.

DES(0) = [%] 100,

d

ﬂff(ﬂ{—aj S @.

Theorem 1 Let f and g be two continuous
functions defined on the interval [a, b]. Then for all ¢
€ [a, b], the following properties hold:

for m >0,
D f0+e0)= DO+ ,D'g0);  (3)
form>n >0,

D (D)= ,D (1) €5

for m >0,
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From Agrawal'¥, the Euler-Lagrange equations of
conservative systems with the fractional variational

problems as

a—L+fo oL + D oL _
o} 0,D/q 8,D/q

t €la,b], (6)

)

where L is a Lagrangian. When o = f =1, we have

a 't

Dy _4 and ,Df __4 and the Eq. (6) is reduce to
dr dt

the standard Euler-Lagrange equations.

2 The Equations of Motion of Non-
holonomic Systems with Fractio-
nal Derivatives

In this section, we introduce the equations of

the Hamilton action of fractional
[38]

motion and
nonholonomic systems" ™. At first, we consider the
constrained mechanical system which configuration
are determined by n generalized coordinates
q,(keN,k=1,2,..,n)and the motions of system are
subjected to the u ideal bilateral nonholonomic

constraints of Appell-Chetaev type

f,=q,,Dq, D, q)
(=1, .., ), ™)
we suppose that these constraints are independent

each other, therefore the restrictive conditions of

virtual displacement which decide on these constrains

as follows:
n af[ n af[
D —E—08g,=0, ) —4—5¢,=0. (8)
k=1 aaD, qk k=1 a,Db qk

Hence, the equations of motion of nonholonomic
systems with fractional derivatives are given by
0q, 0,D/q, 0,D;q,
n of. n of
_ _ A H _ /1 H ,
Qk Z . aaDtaqk k=1 . atDbﬂqk (9)

k=1

where L is the Lagrange function of the given systems,
the Lagrangian L:[a,h]xR"xR" — R is determined
by n generalize coordinates ¢, and assumed to be a
C” function with respect to all its arguments. The
parameter A is the Lagrange constraint multiplier, and
O, is the non-potential generalized force.

When we assume that the fractional system is
nonsingular, before calculus the derivatives function
(7) and (9), we can get function A=A(t,q, D’q,
D/ q), therefore the Eq. (9) can be written as

oL . OL 5 oL

~——+.D; -t B

0q, 0,D/q, 0,Dyq, (10)
=-0, -4,

where 4, is the nonholonomic constraint forces which

determined by parametert, ¢, , D,"q,, D,”q , that is

Ak = Ak(t’q’ aDzaqa tDb/jq)

n a n a
=> ’, L1352 . v
= 0,D%q, = 0D/q,

> 11

We say that the extremum problem of the faction
integral function (12) is the fractional Hamilton action

of the nonholonmic systems

b
S:f L(t.q,. ,Dq,, D/q,)dt, (12)
with the commutative relations,
8,Dq, = ,Ddq,,
{ ’ﬁ ‘ ﬁ’ , (13)
8,Dyq, = Dy dq,,

and the boundary conditions,
q.(@=q,|_->490)=q]_,

where & is the isochronous variation operator. The
quasi-invariance problem of function (12) is called
variational problem of fractional nonhonholonomic
systems. When o = f =1, the problem is reduced to

the classical Hamilton action variational problem of
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nonholonomic systems.

3 Noether Theorem of Nonholono-
mic Systems with Fractional Deri-
vatives

In this section, we give the definition and the
necessary conditions of the quasi-invariance of
Hamilton action (12) under the infinitesimal group of
transformations. We adopt the infinitesimal trans-
formations contain without the time variable and the
general transformations of time-reparametrization.
Then we obtain the factional Noether theorems
without transformation of the time and the general
with transformation of time-reparametrization respect-
ively.

Definition 2 (invariance without transforming
the time). For a fractional nonholonomic system, we
call that the formula (12) is quasi-invariant under the

one-group of infinitesimal transformations

qk(t) =4 (t) +€§k(t9qk)+0(8)
(k=1,2,...,n), (14)

if and only if,

[ .0, ,074,0). g, ()
= [ Leq0.. 07,0, Do)+

ft (.DAG— ,DFAG+(Q, + A)Sq, )dr,  (15)
for any subinterval[t,,t,] = [a,b], where dq, = &&, , &,
are the fractional infinitesimal generation functions of
the infinitesimal transformations, AG = ¢G, (t,q,) are
fractional gauge functions of nonholonomic system.
Theorem 2  (Necessary condition of quasi-
invariant). For a fractional nonholonomic system, if
the function (12) is quasi-invariant under ¢ parameter
infinitesimal group of transformations (14), then they

must satisfy the following conditions,

oL oL . oL
_ézk L a— aD),‘ gk +—ﬂrDbﬁ§k
g, 0,D/q, 0,Dyq,
= tDbﬂGN_aDtaGN_(Qk-'-Ak)fk‘ (16)
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Proof By hypothesis, we know that the
conditions (15) are true of the arbitrary subinterval
[t.t,]1<[a,b], taking the derivative of the condition
(15) with respect to ¢, substituting ¢ = 0. From the
definitions and properties of the fractional derivatives,

we get

oL
0,Dq,

a t

0 :a—Lék +(O, +A)E +
oq,

&

d 1 n—-a-1
ds{]“(n a)(dt] L(t O a(Od0+

dY p oL
2 e-oe6,9)do| +—2—.
(dt] [a-or50.0 } o

d 1 n-p-1
ds{]“(n ﬂ)( jf(e £y q(0)d0 +

& d "ot wpt
I'(n- ﬂ)[ j .’.a(g_t) fk(esq)d9:| +

d I £ P B
T a)(dt] L(r 0)y~G, (6, q)dH:l

&=0

ol a)
d|rm-p) ' (17)
[ @-0716,0.0000

&=0

Eq. (17) is equivalent to Eq. (16).

In order to obtain the fractional conserved
quantity of nonholonomic systems, we introduce the
following definition'*!.

Definition 3 Given two functions f and g of
class C' in the interval [a, b], we define the following

operator:

'gra(f’g):faDrag_gtDbafz
tela,b], (18)

when a =1, operator 2" is reduced to
‘gt] (fﬁg) = faDt]g_gtDllf
., d
= + = — .
fBrfe=1 8

Definition 4  (Fractional conserved quantity).

For a fractional nonholonomic system, the function
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I1=1(t,q,, ,Dq,, D’q,) is a fractional conserved
quantity if and only it can be written as

I= Zli] (t.9;,,D/q,. tDbﬁqk)'

i=1

12(t, 4, D g, DY q,). (19)

where 7€ N, and the pair I'; and /%, (i=1, ..., r) must

satisfy one of the following conditions:

21 (.4, ,D7q,» Dy q,),
[,-z(faf]k» (,D,af]ka tDbﬂqk)) = O,

or

'gla(liz(t’qk’ aDtaqk’ (quk)s
1'(t,q,, . Diq,. Dl q,) =0,

under the fractional Euler-Lagrange Eq. (6).

Theorem 3 (Noether theorem without trans-
formation of time). For a fractional nonholonomic
system, if the Hamilton action satisfies the Definition
2 and ¢, satisfies the necessary conditions (16), then

the system possesses the fractional conserved quantity

as follows:
I(taqks anaqkﬂ tDbﬂqk)
oL oL
:( —— 5 ]§k+GN. (20)
0,D%q, 0,Dyq,
Proof We consider the fractional derivatives

Eq. (10) of the nonholonomic systems:

OL __ pe_OL
0q, o 0,D/q,
oL
DfF— +4), 21
a "t atDbﬁqk (Qk k) ( )

Substituting Eq. (21) into the necessary conditions of

quasi-invariance (16), we obtain

L L
—,Dfa—aék - ana—ﬁe‘k -
aaD[ qk atqu
oL oL
+A)E +——— DYE +——— DPE +
(Qk k)fk 5,1quk a~t ka a,Dbﬂqk t~b fk
aDtaGN - tDb/jGN +(Qk +Ak)§k
oL ., . oL
:—aaDt ka _ch —afk -
ath qk aaDt qk

oL oL
[aDlﬁa ;3 gk_a B szﬁcka+
Dyq Dy aq,

1- DG, -G, D!1+G, D/1- DIG, -1
oL oL
—-@“[—a,@)—ﬂf@—ﬁ} (22)
0,D/q, 0,D;q,
2'(L,G,)+2°(G,.1)
=0.
Definition 5 (Invariance of Eq. (12)). For a
fractional nonholonomic system, we say that Eq. (12)
is quasi-invariant under a ¢ parameter infinitesimal

group of transformations

t=t+&(t, q,)+0(e),
q.()=q, )+, (t, q,)+0(e)
(k=1,2,..,n), (23)

if and only if

[ Le.q.0.074,0). Dl g 011
- [ @@ @@, ,0:a, @), D{F, @)t +
[ (DG = DIAG)+(©, +A)ST)IT, (24)

for any subinterval [¢,f,]c[a,b], where & be a
infinitesimal generation functions of the infinitesi-
mal transformations, 0q, =&(&, —a D’q,&)=8(&, +
B.D)4, ).

Theorem 4 (Noether theorem). For a fractional
nonholonomic system, if Eq. (12) satisfies Definition
5 under the one-parameter group of infinitesimal
transformations (23) and conditions (24), then the

system holds the fractional conserved quantity as:

1, g, D gy erqk)

oL
=LE+ -a /D -
é aaDtaqk (ék a’t qk 5)
oL 5
m(§k+ﬂtl)b 4:8)+Gy. (25)
Proof Introducing a one-to-one Lipschitzian

transformation with respect to the independent

variable 7,
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tela,bl>of(r)elo,,0,], (26)

and it satisfies if 7=0, thent,' = f(r)=1. Applying

this transformation into Eq. (24), we have

S(t(), (1))
[ {r(a),qk (o)., Df'q, (t(a)),} fdo—
o [ D)q,(t(o)
fzz {GD,”‘AG— D/ AG +}t,

_ -do, (27)
(O, +A)q, (o))

where t(c,) =a,t(o,)=b . Under the definitions of

fractional Riemann-Liouville, we get

a 1 d n
. D; 14, (t(G» = W[MJ .

[V (erm-oyq, (67 w)ao

S

—ﬂ i e _ n-a-1
_F(n—a)[daj .'-(ﬂﬂf(U s)"" g, (s)ds

=) , Dq, (o). (28)
()’

We can also obtain the following equality:

oy Do q (@) = ()" D’ q,(0). (29)
)y

When A =0, we have

(t; )_a a D: qk (O-)
)
= aDzaqk > (t;)iﬂ gDﬂqu (o)

(Ga%

= thqk .
Then we obtain

S(t(),q(t()
o H0).q, @) (1)
:Lf . Deq, (o))" D’ ¢, (o) (199~

(A% (A%

" {D (G, (1(0), 4, (1(0))) —}t, o
2 |,Df (G, (t(0).4, (t(0))

n (Qk + Ak)'g(gk _a(t!;)_a
| |« Dig(0)9) fpdo

)
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10).q, (1.1, (t)) ", Diq, (o),
_ b — (t{;)z _
- f"u ¢ (t, )18 o‘Dﬂb g9, (o) do
" {anAé (t(0).4; <r<a>>,t;)—} o
o |, D{AG(1(0).q, (t(0)).1)

Y O, +A) e, —alt)”
f’l a D:qk (0)5) t";do-

(1)
- [ L.q,0),D7q,0),, D g, ) di -
f’z (_D“AG— DIAG +(0, + 4,)57,) di
=S(q())- (30)

We know that if the functional (12) satisfies the
quasi-invariant condition (24) under the sense of
Definition 5, then Eq. (27) satisfies the quasi-invariant
condition (15) under the sense of Definition 2. Finally
using Theorem 3, we obtain the following fractional
conserved quantity:

1(1(0),q, (1(0)) 1. (1,)" , D7q,(0),
)

oL
)", D', q.(0)=|—— p -
e o), D3g,(o)
)
oL 9 -
+—LE+G
o))", D", q.(0) W et
()
oL

=LE+ -a D -

¢ 5 D, (& —a,Dq.8)

oL P
m(fkﬁLﬂtqukf)ﬁLGN, (31
where
O peg, L o
o, o), Dig(o) ot
(A%

(t' )_a ( d J” 7 n—-a-1 ’
) | = - ds [t +
{r(n_a) - f(;,)zw S g, (s)ds |1]

oL

o(t,)” D", ¢,(0)
)
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' \-f n b
i{ () [_ij J'u;,f (S_o-)"ﬂlqk(s)ds]t;

at; rn-p)\ do -
oL oL
=L-q——— D%, —f——— DF s 32
aaDlaqk a "t qk ﬂalDbﬁqk t*™~b qk ( )
and
oL B oL
0,D/q, atDbﬂqk
_ oL oL (33)

o), Digo) o))", D", q.(0)

4 Noether Inverse Problems of Non-
holonomic Systems with Fractio-
nal Derivatives

In this section, we study the inverse problems of

dynamics for the nonholonomic systems with
fractional derivatives. By using Noether theory the
generators and the gauge functions of the infinitesimal
transformations corresponding to the known con-
served quantities are deduced simultaneously.

Firstly, we suppose that nonholonomic system is

nonsingular and the fractional conserved quantity is
1=1(t,q,,,D"q,, Dq,)=const. (34)

Let the fractional differential operator,Dj act on Eq.

(28), we obtain

ol ol ol
Dt—+ DYq, —+. D?( D +
t=b at t b qk aqk t b (a t qk)aaDtaqk
ol
D7 R 35
o qk alefJQk ( )

and using the same method, from the fractional

differential operator ,D” | we have

aDtﬂtg+a Dtﬂqk i"_a Dtﬂﬂlqk al +
ot 0q, 0,Dq,
ol
DP(Dfg ) ——. 36
a~t (r b qk)athqk ( )

Then, multiplying &, —a,D’q,& on both side of Eq.

(8) and expanding of the result, we get

[8L e 0L s oL

—+ D +Qk+/1kj-
’ ' 9,D/q,

b ~t
0q, 0,D/¢q;
(gk _aaDtaqkég)

2L 2
= a szat+ rD:qk +
ataaDtaqk aqkaa Dtaqk

o°L e ’L
— D gt ——— D
0,D;q,0,D/q, 0t0,D; q,

o’L o°L e
——— Dlg A ———— Dq)+
09,0,D; q, 0,D/q,0,Dyq,

o’L o’L

— D“(aD"q )t ————
a(,Dfgy " Y B(,Dlg, )

oL .
aDtﬁ(tDbﬂqk +$+Qk +AkJ(§k -a,Dfq,$). 37)

k

Using the similar multiplier & +8D/q,&, we can

also expand the following formula:

a_L t }7 aL + aDtﬂ aL +Qk +Ak !
0q, 0,D/q, 0,D/q,
(& +BDLq,&). (38)

Further, we use Eq. (37) minus (35), separate out the
Dy (,D’q,), and make its

coefficient be equal to zero, we get

items of containing

o°L ol
—— (&, —a, D’ -———=0. (39
5Drq.) (& —a.Dq,$) 5D (39)
Using the same method, Eq. (38) minus (36), separating
out the items of containing ,D”(,Dq,), and making

its coefficient be equal to zero, we get

o’L ol
———— (& +BDq.E)———F—
o(Dlq) " " 9.Dfq,

t

=0. (40)

By hypothesis, we know the nonsingular of the given
fractional nonholonomic system, from Eq. (39) and
(40) , we obtain

5_[ 2L ]1 ol
" \a(,Drq) ) 8,0’

5_{ oL j ol
©\e.Dpfe)) 8,00,

(41)

where

649
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6?1 =§k_aaDtaqk§’ g=§k+ﬂchﬂqk§'

Finally, in order to obtain the infinitesimal
generation function &£ and the gauge functions, let the

function (34) be equal to the conserve quantity (Eq.
(25)) determined by Theorem 4, we have

oL

LE+——— (& —a D q,&) -

§ 60Dtaqk (gk aa t qké)

_oL (& +B.DPq E)+G, =1 (42)
atle;qk k Ly 4 N =1

Eqgs. (41) and (42) reduce to the generation functions

of infinitesimal transformations.

S Example

We consider the kinetic energy and potential

energy of the system respectively as follows:
T=((DIg)y (DI V=0, (4)
the nonholonomic constraint as:
f=,D"q+btD'q,—bq, +t=0. (44)

Now we study its Noether symmetry and its inverse
problems.
1) The Lagrangian of the nonhonolomic system is

as follows:
1 a a
L=T-V :E((QD[ 4 +(,D"q,)), (45)
the fractional Hamilton action can be written as

s=[ 12, pra) +(Dig . (46)

which is quasi-invariant under Definition 5. For the
problem (46), we can conclude the following solutions
from the condition (24):

51 207 9511 Z_bt5 521 =1= Gz_b%; (47)
52 = 1’ ézlz = aDtaql’ 522 = aDtan’

1 o o
G=2(D'a) + (D' a.)). (48)

Eqgs. (47) and (48) corresponding to Noether symme-

tries of the fractional Hamilton action (46). For the

650

fractional Noether Theorem 4, the fractional conser-

ved quantities as follows (25),
Il = _btaDtaql + aDtan +bql ’ (49)

I’'=0. (50)
2) Noether inverse problems.

We suppose that
I=-bt Dfq + ,D’q, +bg,, (51)

is the fractional conserve quantity of the nonholono-
mic system, and the fractional Lagrangian is Eq. (45).
Then by using Egs. (41) and (42), the generators and
the gauge functions of the infinitesimal transform-
ations corresponding to the known conserved quan-

tities are deduced simultaneously, we get

& —a,Dqs=-0t,
é:z +ﬂaDtaQQ§ =1,

(52)
Lég_btthaql + thaqz +GN
=-bt Dfq,+ ,D’q, +bq,,
the solution can be written as
1
&= Z(bql -G),
951 :_bt+aaD;aq1§$ (53)
& =1-B,Dq,¢.
When G is given by
G=bg, (54)
we get
£=0, & =-bt, & =1. (55)
When G is given by,
G=bq L, (56)
we get
=1
& =-bt+a ,Dlq, 57
& =1-B.D/q,.

6 Conclusion

In this paper, we use the Riemann-Liouville

fractional derivatives to obtain the fractional Noether
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theorem and the fractional Noether inverse theorem of

nonholonomic systems under the infinitesimal trans-

formations. We find that the dynamic symmetry

inverse problems of multiple values are the inherent

characteristics, and how to choose the appropriate

equations in practice need further research.
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